Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T05:09:36.271Z Has data issue: false hasContentIssue false

Kinetics Study of Hydrogen Discharge from A Lani4.5AL0.5Dy Electrode by in Situ Real Time Neutron Diffraction

Published online by Cambridge University Press:  25 February 2011

Christiane Poinsignon
Affiliation:
Laboratoire d'Ionique et d'Electrochimie des Solides-Grenoble ENSEEG BP 75. F-38402 ST-MARTIN D'HERES
Nicole Dalphrase
Affiliation:
Laboratoire d'Ionique et d'Electrochimie des Solides-Grenoble ENSEEG BP 75. F-38402 ST-MARTIN D'HERES
Michel Latroche
Affiliation:
Laboratoire de Chimie Metallurgique et des Terres Rares, CNRS 1 Place Aristide Briand F-92195 MEUDON CEDEX
Jean Pannetier
Affiliation:
INSITUT LAUE LANGEVIN 156X F-38042 GRENOBLE, France
Annick Percheron
Affiliation:
Laboratoire de Chimie Metallurgique et des Terres Rares, CNRS 1 Place Aristide Briand F-92195 MEUDON CEDEX
Get access

Abstract

Electrochemical studies performed by linear potential scan voltamperometry on the monosubstituted intermetallic hydrides LaNi4.5M0.5, with M=AI, Mn or Co, confirm previous observations [ 14, 16, 20] of the influence of the nickel substitute on the rate of hydrogen insertion/desinsertion in solid gaz : the rate of discharge is faster for the Co and Mn substituted hydrides than for the Al one : during a controled discharge process by potential step of 20mV during 10 hours, hydrogen full capacity is desinserted over a potential range of 200mV in 80 hours for LaNi4.5AI0.5, over 130mV in 40 hours for LaNi4.5Mn0.5 and over 50mV in 30 hours for LaNi4.5Co0.5

Coupled techniques of real time neutron diffraction and linear potential scan voltammetry applied to the in situ study of the charge/discharge of a LaNi4.5A10.5Dx electrode in a KOD 7N electrolyte gives account for the respective variation of the cell parameters of the α and β phases[ 11] and provides access to the hydogen desinsertion kinetics from both phases. The decrease rate of the unit cell volume of the α phase is found to be 4.8 10−3 A3/hour whereas that of the β phase is 61 10−3 A3/hour. At the end of the discharge process occurence of isolated 13ph ase domains is attributed to the faster rate of hydrogen desinsertion in the β phase than in the (β phase, which is in all likelihood at the origin of the loss of capacity observed during cycling for this electrode.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] vucht, J.H.N. Van, Kuijpers, F.A. and Bruning, H.C.A.M.. Philips Res. Rep. 25 133 (1970) p1413.Google Scholar
[2] Mal, H. Van, Buschow, K.H., Kuijpers, F.A., J. Less Common Metals 32 (1973) p289.Google Scholar
[3] Diaz, H., Percheron-Guegan, A., Achard, J.C, Chatillon, C., Mathieu, J.C. Int. J. Hydrogen Energy 4 (1979)..p445.Google Scholar
[4] Achard, J.C, Dianoux, A.J. Lartigue, C. Percheron-Guegan, A. and Tasset in McCarty, G.J Silver, H.B., and Rhyne, J.J. (Eds), The Rare Earths in Modern Science and Technology, Plenum, New York 3 (1982) p481.Google Scholar
[5] Boser, O. J. Less Common Metals 46 (1973) p91.Google Scholar
[6] Gerard, N. J. Less Common Metals 131 (1987) p13.Google Scholar
[7] Dantzer, P. J. Less Common Metals 131 (1987) p34 9.Google Scholar
[8] Goudy, A.J., Stockes, D.G., Gazzillo, J.A. J. Less Comm 99 (1984) p249.Google Scholar
[9] Goudy, A.J., Wallingford, R.A. J. Less Common Metals 99 249257(1984).Google Scholar
[10] Koh, J.T, Goudy, A.J., Huang, P., Zhou, G. J. Less Comm. Met 153 (1989) p 89.Google Scholar
[11] Latroche, M., Percheron-Guegan, A., Chabre, Y., Poinsignon, C., Pannetier, J.. J. Alloys and Compounds 189 (1992) p59 Google Scholar
[12] Godell, P.D. and Rudman, P.S. J Less Common Metals 89 (1983) p117 Google Scholar
[13] Rijswick, M.H.J. Van in Hydrides for Energy storage Pregamon press (1978) p261 Google Scholar
[14] Mendelsohn, M., Gruen, D.M. in McCarty, G.J Silver, H.B., and Rhyne, J.J. (Eds), The Rare Earths in Modern Science and Technology, Plenum, New York 3 (1982) p593.Google Scholar
[15] Mendelsohn, M.H. Gruen, D.M. and Dwight, A.E. J Less Common Metal 63 (1979) p 193.Google Scholar
[16] Bowman, R.C. Jr, Gruen, D.M. and Mendelsohn, M H.. Solid State communications 19 (1976) p425.Google Scholar
[17] Halstead, T.K., Abood, N.A. and Buschow, K.H.J.. Solid State communications 32 (1979) p501 Google Scholar
[18] Wang, X.L., Suda, S. J Less Common Metals 159 (1990) p83 Google Scholar
[19] Wang, X.L., Suda, S. JLess Common Metals 159(1990) p109.Google Scholar
[20] Zarynow, A., Goudy, A.J., Schweibenz, R.G., Clay, K.R. J.Less Common Metals 172–174 (1991).p109.Google Scholar
[21] Buchholtz, J., Vôlk, J., Alefeld, G.. Phys. Rev. Letters 30 (1973) p318.Google Scholar
[22] Pasturel, A., Chatillon-Colinet, C., Percheron-guegan, A. and Achard, J.C. J.Less Common Metals 159(1990).p1O9.Google Scholar
[23] Poinsignon, C., Miraglia, S., Anne, M., Fruchart, D., Pannetier, J., Forestier, M., Rouault, A. Z. Physikalische Chemie Neue Folge, 164 (1989) p1515.Google Scholar
[24] Ripert, M., Poinsignon, C., Pannetier, J., Chabre, Y.. MRS Symposium Proceedings Series 210 (1991) p359.Google Scholar