Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T13:52:02.766Z Has data issue: false hasContentIssue false

Kinetics of Dopant Metastability in a-Si:H

Published online by Cambridge University Press:  21 February 2011

C. E. Nebel
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, California 94304 USA
R. A. Street
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, California 94304 USA
N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, California 94304 USA
W. B. Jackson
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, California 94304 USA
Get access

Abstract

Small temperature-induced perturbations from thermodynamic equilibrium of doped hydrogenated amorphous silicon (a-Si:H) are explored by dark conductivity measurements. The equilibration kinetics reveal significant differences between phosphorus and boron doping. Raising the temperature leads to an increase of electron/hole densities which are related to the activation of additional dopants, while a decrease of temperature causes the opposite effect of dopant passivation. The creation kinetics of P doped a-Si:H is stretched exponential with a temperature independent β value of 0.85 whereas dopant passivation in the same temperature range is also stretched exponential decay, but with values for β < 0.8. In contrast, the kinetics of boron activation and passivation are stretched exponential with equal β values. The time constant τ to achieve thermodynamic equilibrium for both activation and passivation is thermally activated with energies ≃ 1.1 eV for P and B doped a-Si:H. τ depends weakly on the degree of perturbation. A discussion and interpretation of the data based on hydrogen migration in a-Si:H is given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chittick, R. C., Alexander, R. C., Sterling, H. F., J. Electrochem. Soc. 116, 77 (1969).CrossRefGoogle Scholar
2. Spear, W. E., LeComber, P. G., Sol. State Com. 17, 1193 (1975).Google Scholar
3. Street, R. A., J. Non Cryst. Sol. 77&78, 1 (1985).Google Scholar
4. Stutzmann, M., Biegelsen, D. K., Street, R. A., Phys. Rev. B 35, 5666 (1987).Google Scholar
5. Street, R. A., Kakalios, J., Tsai, C. C., Hayes, T. M., Phys. Rev. B 35, 1316 (1987).Google Scholar
6. Liu, E. Z., Spear, W. E., Phil Mag. B. 64, 245 (1991).Google Scholar
7. Kakalios, J., Jackson, W. B., in Amorphous Silicon Related Materials, ed. by Fritzsche, H. (London: World Scientific), 207 (1989).CrossRefGoogle Scholar
8. Street, R. A., Hack, M., Jackson, W. B., Phys. Rev. B 8, 4209 (1988).CrossRefGoogle Scholar
9. Street, R. A., Physica B 170, 69 (1991).CrossRefGoogle Scholar
10. Jackson, W. B., Phys. Rev. B 41, 12323 (1990).Google Scholar
11. Taraskin, S., J. Non-Cryst. Sol. 137&138, 25 (1991).Google Scholar
12. Johnson, N. M., J. Non-Cryst. Sol. 137&138, 11 (1991).Google Scholar
13. Chang, K. J., Chadi, D. J., Phys. Rev. Lett. 60, 1422 (1988).Google Scholar
14. Van de Walle, C. G., priv. communication.Google Scholar