Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T05:16:44.891Z Has data issue: false hasContentIssue false

Kinetics Approach To The Growth Of Cubic Boron Nitride

Published online by Cambridge University Press:  15 February 2011

C. A. Taylor II
Affiliation:
Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1120
Roy Clarke
Affiliation:
Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1120
Get access

Abstract

We have deposited cubic BN films on silicon (100) using a novel ion-assisted RF-sputtering process. Our efforts over the past several years have enabled us to significantly reduce the ionenergy needed to form the cubic phase, with values now substantially less than 100 eV. Through a better understanding of the growth process we have been able to make improvements in film crystallinity and orientation, with an associated reduction of the high film stress which has severely limited film thickness in the past. The combination of low-energy nitrogen ions and high temperature growth has enabled us to deposit cubic BN films as thick as 1.9 μm. A nucleation study, performed using scanning force microscopy, shows that the cubic BN is nucleating as triangular crystallites, indicative of (111) growth. More specifically, the cubic BN appears to be nucleating on the edges of perpendicularly oriented hexagonal planes such that the cubic BN [ 111] is normal to the hexagonal BN [0002] (c-axis). The results suggest a pathway to “compliant” oriented growth on a variety of substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kidner, S., Taylor, C. A. II, and Clarke, R., Appl. Phys. Lett. 64, 1859 (1994).Google Scholar
2. Taylor, C. A. II and Clarke, R., paper presented at The 6th European Conference on Diamond, Diamond-like and Related Materials, Barcelona, Spain, Sept. (1995).Google Scholar
3. Taylor, C. A. II, Encarnacion, P., and Clarke, R., poster presented at Materials Research Society Fall Meeting, Boston, Mass., Nov. (1995).Google Scholar
4. Mirkarimi, P. B. et al., Appl. Phys. Lett. 66, 2813 (1995).Google Scholar
5. Mirkarimi, P. B. et al., J. Mater. Res. 9, 2925 (1994).Google Scholar
6. Reinke, S. et al., Diamond Relat. Mater. 4, 272 (1995).Google Scholar
7. Wada, T. and Yamashita, N., J. Vac. Sci. Technol. A 10, 515 (1992).Google Scholar
8. Kester, D. J. and Messier, R., J. Appl. Phys. 72, 504 (1992).Google Scholar
9. Kester, D. J. et al., J. Mater. Res. 8, 1213 (1993).Google Scholar
10. Medlin, D. L. et al., J. Appl. Phys. 76, 295 (1994).Google Scholar
11. Reinke, S., Kuhr, M., and Kulisch, W., in Proc. of 4th International Symposium on Diamond Materials, Reno, Nevada, May 1995.Google Scholar
12. Kester, D. J. et al., J. Vac. Sci. Technol. A 12, 3074 (1994).Google Scholar
13. Fahy, S., Phys. Rev. B 51, 12873 (1995); erratum (in press).Google Scholar
14. Sanjurjo, J. A. et al., Phys. Rev. B 28, 4579 (1983).Google Scholar
15. Gielisse, P. J. et al., Phys. Rev. 155, 1039 (1967).Google Scholar
16. Brafman, O. et al., Solid State Commun. 6, 523 (1968).Google Scholar
17. McKenzie, D. R. et al., Diamond Relat. Mater. 2, 970 (1993).Google Scholar
18. Friedmann, T. A. etal., J. Appl. Phys. 76, 3088 (1994).Google Scholar
19. Flynn, C. P., J. Phys. F 18, L195 (1988).Google Scholar
20. Kidner, S., Ph.D. Thesis, The University of Michigan, 1994.Google Scholar
21. Taylor, C. A. II, Fahy, S., and Roy Clarke, submitted for publication.Google Scholar
22. Ruppin, R. and Englman, R., Rep. Prog. Phys. 33, 149 (1970).Google Scholar
23. Medlin, D. L. et al., Phys. Rev. B 50, 7884 (1994).Google Scholar
24. Reinke, S., Kuhr, M., and Kulisch, W., in Proceedings of the 187th Meeting of the Electrochemical Society, 1995 (unpublished).Google Scholar
25. Medlin, D. L. et al., J. Appl. Phys. 79, 3567 (1996).Google Scholar
26. Medlin, D. L. et al., Phys. Rev. B 51, 10264 (1995).Google Scholar
27. Wheeler, E. J. and Lewis, D., Mat. Res. Bull. 10, 687 (1975).Google Scholar
28. Corrigan, F. R. and Bundy, F. P., J. Chem. Phys. 63, 3812 (1975).Google Scholar