Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T00:12:25.162Z Has data issue: false hasContentIssue false

Kinetics and Thermal Stability of Ni/Zr Multilayer Thin-Film Diffusion Couple during a Solid State Amorphization Reaction

Published online by Cambridge University Press:  26 February 2011

W. J. Meng
Affiliation:
Laboratory, California Institute of Technology, Pasadena, California 91125
E. J. Cotts
Affiliation:
Laboratory, California Institute of Technology, Pasadena, California 91125
W. L. Johnson
Affiliation:
Laboratory, California Institute of Technology, Pasadena, California 91125
W. M. Keck
Affiliation:
Laboratory, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

Differential scanning calorimetry and X-ray diffraction have been utilized to monitor the solid state amorphization reaction in crystalline Ni/Zr multilayers. Enthalpy of mixing of amorphous NiZr alloys has been measured. Kinetics of amorphous phase formation and thermal stability have been discussed in some detail.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENce

1. Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
2. Schroder, H., Samwer, K., and Koster, U., Phys. Rev. Lett. 54, 197 (1985);CrossRefGoogle Scholar
Newcomb, S. B. and Tu, K. N., Appl. Phys. Lett. 48, 1436 (1986).CrossRefGoogle Scholar
3. Cheng, Y. T., Johnson, W. L., and Nicolet, M. A., Appl. Phys. Lett. 47, 800 (1985); J. C Barbour, Phys. Rev. Lett. 55, 2872 (1985).CrossRefGoogle Scholar
4. Shultz, L., in Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (North-Holland, Amsterdam, 1984), p. 1585;Google Scholar
Cotts, E. J., Meng, W. J., and Johnson, W. L., Phys. Rev. Lett. 57, 2295 (1986).CrossRefGoogle Scholar
5. Gösele, U. and Tu, K. N., J. Appl. Phys. 53, 3252 (1982).CrossRefGoogle Scholar
6. Henaff, M. P., Colinet, C., Pasturel, A., and Buschow, K. H. J., J. Appl. Phys. 56, 304 (1984).CrossRefGoogle Scholar
7. Unruh, K. M., Meng, W. J., and Johnson, W. L., Mat. Res. Soc. Symp. Proc. Vol. 37, p.551.CrossRefGoogle Scholar
8. Clemens, B. M., Phys. Rev. B 33, 7615 (1986);CrossRefGoogle Scholar
Hahn, H., Averback, R. S., and Rothman, S. J., Phys. Rev. B 33, 8825 (1986).CrossRefGoogle Scholar
9. Altounian, Z., Guo-Hua, Tu, and Strom-Olsen, J. O., J. Appl. Phys. 54, 3111 (1983).CrossRefGoogle Scholar