Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-19T04:36:32.007Z Has data issue: false hasContentIssue false

Kinetic Limits to Growth on GaAs by Omcvd

Published online by Cambridge University Press:  28 February 2011

D. E. Aspnes
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
R. Bhat
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
E. Colas
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
M. A. Koza
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
V. G. Keramidas
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
Get access

Abstract

Using a real-time surface probe with 0.01 monolayer (ML) sensitivity, we determine the rate-limiting steps for atmospheric-pressure, alternating-layer-epitaxy OMCVD growth on (001) and (110) GaAs with trimethylgallium and arsine sources. The reaction of TMG with AsH3- saturated (001) GaAs is limited by a competition between decomposition (at 39 kcal/mole) and desorption of TMG chemisorbed (at −26 kcal/mole) via an excluded-volume mechanism. The reaction of AsH3with TMG-saturated (001) GaAs shows an initial fast transient followed by a slower recovery. On (110) GaAs, TMG reacts essentially instantaneously with an AsH3-saturated surface while the reaction of AsH3 with a TMG-saturated surface is relatively slow. In the latter case temperature and pressure dependences indicate a fast AsH3 -surface reaction that is blocked by an adsorbed species that must be desorbed before the AsH3 -surface reaction can take place.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jacko, M. G. and Price, S. J. W., Can. J. Chem. 41, 1560 (1963).Google Scholar
2. DenBaars, S. P., Maa, B. Y., Dapkus, P. D., Danner, A. D., and Lee, H. C., J. Crystal Growth 77, 18 (1986).Google Scholar
3. Butler, J. E., Bottka, N., Sillmon, R. S., and Gaskill, D. K, J. Crystal Growth 77, 163 (1987).Google Scholar
4. Lee, P. W., Olmstead, T. R., McKenna, D. R., and Jensen, K F., J. Crystal Growth 85, 165 (1987).CrossRefGoogle Scholar
5. Larsen, C. A., Buchan, N. I., and Stringfellow, G. B., Appl. Phys. Lett. 52, 480 (1988).Google Scholar
6. Suzuki, H., K Mor, Kawasaki, M., and Sato, H., J. Appl. Phys. 64, 371 (1988).CrossRefGoogle Scholar
7. Lückerath, R., Tommack, P., Hertling, A., Koss, H. J., Balk, P., K Jensen, F., and Richter, W., J. Crystal Growth 93, 151 (1988).CrossRefGoogle Scholar
8. Dapkus, P. D., Manasevit, H. M., Hess, K L, Low, T. S., and Stillman, G. E., J. Crystal Growth 55, 10 (1981).CrossRefGoogle Scholar
9. Kuech, T. F., Veuhoff, E., Kuan, T. S., Deline, V., and Potemskl, R., J. Crystal Growth 77, 257 (1986).CrossRefGoogle Scholar
10. Petzke, W. H., Gottschalch, V., and Butter, E., Krist. Tech. 9, 763 (1974).Google Scholar
11. Reep, D. H. and Ghandhi, S. K, J. Electrochem. Soc. 130, 675 (1983).Google Scholar
12. Nishizawa, J., Kurabayashi, T., Abe, H., and Sakurai, N., J. Electrochem. Soc. 134, 945 (1987).Google Scholar
13. Nishizawa, J., Kurabayashi, T., Abe, H., and Sakurai, N., J. Vac. Sci. Technol. A5, 1572 (1987).CrossRefGoogle Scholar
14. DenBaars, S. P., Beyler, C. A., Hariz, A., and Dapkus, P. D., Appl. Phys. Lett. 51, 1530 (1987).Google Scholar
15. Balk, P., Fischer, M., Grundmann, D., Luckerath, R., Liith, H., and Richter, W., J. Vac. Sci. Technol. B5, 1453 (1987).CrossRefGoogle Scholar
16. Doi, A., Iwai, S., Meguro, T., and Namba, S., J. Appl. Phys. Jpn. 27, 795 (1988).Google Scholar
17. Aspnes, D. E. and Studna, A. A., Phys. Rev. Lett. 54, 1956 (1985).Google Scholar
18. Aspnes, D. E., Harbison, J. P., Studna, A. A., and Florez, L. T., Phys. Rev. Lett. 59, 1687 (1987).Google Scholar
19. Aspnes, D. E., Harbison, J. P., Studna, A. A., and Florez, L. T., J. Vac. Sci. Technol. A6, 1327 (1988).Google Scholar
20. Colas, E., Aspnes, D. E., Bhat, R., Studna, A. A., Koza, M. A., and Keramidas, V. G., J. Crystal Growth 93, 931 (1988); 94, 613 (1989).Google Scholar
21. Aspnes, D. E., Colas, E., Studna, A. A., Bhat, R., Koza, M. A., and Keramidas, V. G., Phys. Rev. Lett. 61, 2782 (1988).CrossRefGoogle Scholar
22. Aspnes, D. E., Bhat, R., Colas, E., Keramidas, V. G., Koza, M. A., and Studna, A. A., J. Vac. Sci. Technol. A7, 711 (1989).Google Scholar
23. Bhat, R., Koza, M. A., Chang, C. C., Schwartz, S. A., and Harris, T. D., J. Crystal Growth 77, 7 (1986).Google Scholar
24. Aspnes, D. E., Studna, A. A., Florez, L. T., Chang, Y. C., Harbison, J. P., Kelly, M. K, and Farrell, H. H., J. Vac. Sci. Technol. (in press).Google Scholar
25. Suzuki, M. and Sato, M., J. Electrochem. Soc. 132, 1684 (1984).Google Scholar
26. Aspnes, D. E., Harbison, J. P., Studna, A. A., Chang, Y. C., Florez, L. T., and Farrell, H. H. (unpublished).Google Scholar