Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T23:04:49.781Z Has data issue: false hasContentIssue false

Island Structured Dielectric Thin Films by Scalable Self-Assembly

Published online by Cambridge University Press:  01 February 2011

Sharath Sriram
Affiliation:
sharath.sriram@gmail.com, RMIT University, Microelectronics and Materials Technology Centre and Platform Technologies Research Institute, Melbourne, Victoria, Australia
Madhu Bhaskaran
Affiliation:
madhu.bhaskaran@gmail.com, RMIT University, Microelectronics and Materials Technology Centre and Platform Technologies Research Institute, Melbourne, Victoria, Australia
Arnan Mitchell
Affiliation:
arnan.mitchell@rmit.edu.au, RMIT University, Microelectronics and Materials Technology Centre and Platform Technologies Research Institute, Melbourne, Victoria, Australia
Get access

Abstract

A self-assembly driven process to synthesize island-structured dielectric films is presented. An intermetallic reaction in platinized silicon substrates provides preferential growth sites for the complex oxide dielectric (strontium-doped lead zirconate titanate) layer. Microscopy and spectroscopy analyses have been used to propose a mechanism for this structuring process. This provides a simple and scalable process to synthesize films with increased surface area for sensors, especially those materials with a complex chemistry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Comini, E. Faglia, G. Sberveglieri, G. Pan, Z. W. and Wang, Z. L. Appl. Phys. Lett. 81, 1869 (2002).Google Scholar
2 Kalantar-zadeh, K. and Fry, B. Nanotechnology-Enabled Sensors, (Springer, Berlin, 2007).Google Scholar
3 Pan, Z. W. Dai, Z. R. and Wang, Z. L. Science 291, 1947 (2001).Google Scholar
4 Eriksson, J. Khranovskyy, V. Söderlind, F., Käll, P.-O., Yakimova, R. and Spetz, A. L. Sens. Actuators B 137, 94 (2009).Google Scholar
5.O'Brien, S., Brus, L. and Murray, C. B. J. Am. Chem. Soc. 123, 12085 (2001).Google Scholar
6 Zhang, M.-S. Yu, J. Chu, J. Chen, Q. and Chen, W. J. Mater. Proc. Technol. 137, 78 (2003).Google Scholar
7 Limmer, S. J. Seraji, S. Forbess, M. J. Wu, Y. Chou, T. P. Nguyen, C. and Cao, G. Adv. Mater. 13, 1269 (2001).Google Scholar
8 Nourmohammadim, A. Bahrevar, M. A. Schulze, S. and Hietschold, M. J. Mater. Sci. 43, 4753 (2008).Google Scholar
9 Korotcenkov, G. Sens. Actuators B 107, 209 (2005).Google Scholar
10 Sriram, S. Bhaskaran, M. Plessis, J. du, Short, K. T. Sivan, V. P. and Holland, A. S. Micron 40, 104 (2009).Google Scholar
11 Sriram, S. Bhaskaran, M. and Holland, A. S. Semicond. Sci. Tech. 21, 1236 (2006).Google Scholar
12 Bhaskaran, M. Sriram, S. D. Mitchell, R. G. Short, K. T., and Holland, A. S., Thin Solid Films 516, 8101 (2008).Google Scholar
13 Wasa, K. Kitabatake, M. and Adachi, H. Thin Film Materials Technology: Sputtering of Compound Materials, (Springer-Verlag GmbH & Co. KG Heidelberg, 2004).Google Scholar
14 Kim, T. S., Kim, D. J., and Jung, H. J., J. Appl. Phys. 86, 7024 (1999).Google Scholar
15 Lee, C.-K. Hsieh, C.-D. and Tseng, B.-H. Thin Solid Films 303, 232 (1997).Google Scholar
16 Firebaugh, S. L., Jensen, K. F., and Schmidt, M. A., J. Microelectromech. Syst. 7, 128 (1998).Google Scholar
17 Maex, K. and Rossum, M. van, Properties of Metal Silicides, (INSPEC, London, 1995).Google Scholar
18 Bhaskaran, M. Sriram, S. Short, K. T., Mitchell, D. R. G. Holland, A. S., and Reeves, G. K., J. Phys. D: Appl. Phys. 40, 5213 (2007).Google Scholar
19 Sriram, S. Bhaskaran, M. Kostovski, G. Mitchell, D. R. G. Stoddart, P. R., Austin, M. W., and Mitchell, A. J. Phys. Chem. C 113, 16610 (2009).Google Scholar