Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T06:24:07.954Z Has data issue: false hasContentIssue false

Iron-Silicate Glassy Films by Sol-Gel Conversion Induced by Rapid Thermal Processing

Published online by Cambridge University Press:  10 February 2011

René E. Van De Leest
Affiliation:
Philips Research, Prof Holstlaan 4, NL-5656 AA Eindhoven, The Netherlandsroozeboo@natlab.research.philips.com
Fred Roozeboom
Affiliation:
Philips Research, Prof Holstlaan 4, NL-5656 AA Eindhoven, The Netherlandsroozeboo@natlab.research.philips.com
Get access

Abstract

The sol-gel system iron triethoxide - tetraethylorthosilicate (TEOS) with the Fe/Si atomic ratio ranging from 0 to 1 has been investigated. Our study leads to the conclusion that the annealing method of the hydrolyzed precursor film determines the type of solid film formed. Annealing by Rapid Thermal Processing (RTP) with its high heating and cooling rates yields amorphous, glassy iron silicate films. These films result from polycondensation reactions between Si-OH and Fe-OH groups of the hydrolyzed precursors forming Fe-O-Si and Si-O-Si bonds. These bonds show a characteristic vibration band in FTIR spectra, which is most intense for Fe/Si = 1, and shifts for increasing Fe/Si ratio from 1073 down to 965 cm-1.

The iron silicate film with Fe/Si =1 obtained by RTP displays an optical absorption band around 320 nm, which indicates that Fe3+-ions have a tetrahedral coordination similar to the Si4+-ions in Si02 and glass with tetrahedrally coordinated silicon and iron ions linked by bridging oxygen atoms. The films, typically 0.1 μm thick, annealed by RTP have a smooth, mechanically hard surface. This glassy structure can be formally presented as FeSiOx. Conventional furnace heating with low heating/cooling rates yields nanocrystalline films with predominantly Si-O-Si bonding in grains with sizes below 40 nm. More structural and chemical investigation is needed to elucidate the details of the structure and the formation mechanism of the amorphous compound, but we can conclude that the cooling rate has a direct effect on the degree of non-crystallinity of the compound. The high cooling rate of RTP will retain the Fe-O-Si bonds formed in a state of inequilibrium, and “quench” them in an amorphous, metastable glass compound, whereas slow cooling gives rise to nanocomposite film formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Silva, M. G. Ferreira da and Navarro, J. M. Fernandez, J. So/-Gel Sci. Techn., 6, 169 (1996).Google Scholar
2. Mezinskis, G., Frischat, G. H. and Radlein, E., Sol-Gel Conf. Faro, July 1995, pp. 19156.Google Scholar
3. Nizmansky, D., Viart, N. and Rehspringer, J. L., Sol-Gel Conf. Faro, July 1995, pp. 20187.Google Scholar
4. Tanaka, K., Kamiya, K., Matsuoka, M. and Yoko, T., J. Non-Cryst. Sol. 94, 365 (1987).Google Scholar
5. Murawski, L., Wicikowski, L., Gzowski, O., Davoli, I., Stizza, S., Bernardini, R. and Binczycka, H., J. Mat. Sci. 25, 2569 (1990).Google Scholar
6. Yoshio, T., Kawaguchi, C., Kanamaru, F. and Takahashi, K., J. Non-Cryst. Sol. 43, 129 (1981).Google Scholar
7. Tanabe, S., Hirao, K. and Saga, N., J. Non-Cryst. Sol., 100, 388 (1988).Google Scholar
8. Van de Leest, R. E. and Roozeboom, F., Mat. Res. Soc. Symp. Proc., 429,193 (1996).Google Scholar
9. Van de Leest, R. E., Horikx, M. J. A. and Hermans, P. W. H., Appl. Surf. Sci., 106, 412 (1996).Google Scholar
10. Keddie, J. L., Braun, P. V. and Giannelis, E. P., J. Am. Ceram. Soc. 77,1592 (1994).Google Scholar
11. Clark, D. E., Ethridge, E. C., Dilmore, M. F. and Hench, L. L., Glass Technology 18, 121 (1977).Google Scholar
12. Hench, L. L., Newton, R. G. and Bernstein, S., Glass Technology 20, 144 (1979).Google Scholar
13. Morinaga, K., J. Ceram. Soc. Jpn. Inter. Ed. 97, 363 (1989).Google Scholar
14. Roozeboom, F., Ruigrok, J. J. M., Klaassens, W., Kegel, H., Falter, M. and Walk, H., Mat. Res. Soc. Symp. Proc., 429, 203 (1996).Google Scholar
15. Lenglet, M., Bizi, M. and Jorgensen, C. K., J. Sol. St. Chem. 86, 82 (1990).Google Scholar
16. Armalao, L., Bertoncello, R., Crociani, L., Depaoli, G., Granozzi, G., Tondello, E. and Bettinelli, M., J.Mater. Chem. 5, 79 (1995).Google Scholar
17. Phillips, C. S. G. and Williams, R. J. P., Inorganic Chemistry, Vol.1, Oxford University Press, London, 1965, p. 542.Google Scholar
18. Chandra, G. and Martin, T. E., US Patent 5,059,449, 22 Oct. 1991.Google Scholar