Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T15:00:40.636Z Has data issue: false hasContentIssue false

Iron (III) Oxide within Mesoporous MCM-48 Silica Phases: Synthesis and Characterization

Published online by Cambridge University Press:  16 February 2011

R. Köhna
Affiliation:
Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, froeba@xray.chemie.uni-hamburg.de
G. Bouffaud
Affiliation:
Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, froeba@xray.chemie.uni-hamburg.de
O. Richard
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
G. van Tendeloo
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
M. Fröba
Affiliation:
Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, froeba@xray.chemie.uni-hamburg.de
Get access

Abstract

Using multiple cycles of wet impregnation, drying and calcination procedures it was possible to form haematite nanoparticles within the pore system of mesoporous MCM-48 silica phase. A decoration/coating of the inner surface of the silica walls was indicated by a reduction of the BET surface area, the pore radius as well as HRTEM and EDX investigations. Existence of small, slightly disordered iron (III) oxide nanoparticles was proved by X-ray absorption spectroscopic measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Nature 1992, 359, 710.Google Scholar
[2] Schmidt, R.; Stöcker, M.; Akporiaye, D.; Torstad, E.H.; Olsen, A. Microporous Mater. 1995, 5, 1;Google Scholar
Alfredsson, V.; Anderson, M.W.; Ohsuna, T.; Terasaki, O.; Jacob, M.; Bojrup, M. Chem. Mater. 1997, 9, 2066.Google Scholar
[3] Monnier, A.; Schaith, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R.S.; Stucky, G.D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B.F. Science, 1993, 261, 1299.Google Scholar
[4] Morey, M., Davidson, A., Stucky, G. Microporous Mater., 1996, 6, 99.Google Scholar
[5] Morey, M., Davidson, A., Eckert, H., Stucky, G., Chem. Mater., 1996, 8, 486.Google Scholar
[6] Yuan, Z.Y.; Liu, S.Q.; Chen, T.H.; Wang, J.Z.; Li, H.X. J Chem. Soc., Chem. Commun., 1995, 973;Google Scholar
Abe, T.; Tachibana, Y.; Uematsu, T.; Iwamoto, M. J. Chem. Soc., Chem. Commun., 1995, 1617.Google Scholar
[7] Frbba, M., Kbhn, R., Bouffaud, G., Richard, O., van Tendeloo, G., Chem. Mater. 1998, submittedGoogle Scholar
[8] Ressler, T. J. Synchrotron Rad., 1998, 5, 118.Google Scholar
[9] Rehr, J.J.; Mustre de Leon, J.; Zabinsky, S.I.; Albers, R.C. J. Am. Chem. Soc., 1991, 113, 5135.Google Scholar
[10] Manceau, A.; Drits, V.A. Clay Minerals, 1993, 28, 165.Google Scholar