Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-06T19:48:37.059Z Has data issue: false hasContentIssue false

Ionizing Radiation Effects on Interfaces in Carbon Nanotube-Polymer Composites

Published online by Cambridge University Press:  17 March 2011

Julie P. Harmon
Affiliation:
Department of Chemistry
Patricia Anne O. Muisener
Affiliation:
Department of Chemistry
LaNetra Clayton
Affiliation:
Department of Chemistry
John D'Angelo
Affiliation:
Department of Chemistry
Arun K. Sikder
Affiliation:
Center for Microelectronics Research University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33620-5250
Ashok Kumar
Affiliation:
Center for Microelectronics Research University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33620-5250
Meyya Meyyappan
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035
Alan M. Cassell
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035
Get access

Abstract

The purpose of this research was to probe nanotube-polymer composites for evidences of radiation induced chemistry at the interface of the host polymer and the nanotube structures. Single wall carbon nanotube (SWNT) / poly (methyl methacrylate) (PMMA) composites were fabricated and exposed to gamma radiation with a Co60 source at a dose rate of 1.28 X 106 rad/hour in an air environment for a total dose of 5.9 Mrads. Neat nanotube paper and neat PMMA were also exposed. Spun coat films of SWNT/PMMA were exposed to gamma radiation with a Ce157at a dose rate of 4.46 x 103 rad/hr for a total dose of 3.86 Mrads. Both irradiated and non-irradiated samples were compared. Glass transition temperatures were characterized by differential scanning calorimetry. Dynamic mechanical analysis and dielectric analysis evidenced changes in relaxations induced by irradiation. Irradiated composites exhibited radiation induced chemistry distinct from degradation effects noted in the pure polymer. Scanning electron microscopy provided images of the SWNTs and SWNT/PMMA interface before and after irradiation. This investigation imparts insight into the nature of radiation induced events in nanotubes and nanocomposites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature, 354, 56 (1991).Google Scholar
2. Jin, Z., Sun, X., Xu, G., Goh, S. H. and Ji, W., Chem. Phys. Lettrs., 318, 505 (2000).Google Scholar
3. Grimes, C. A., Mingle, C., Kouzoudis, D., Fang, S. and Eklund, P. C., Chem. Phys. Letters., 319, 460 (2000).Google Scholar
4. Star, A., Stoddart, J. Frasser, Steuerman, D., Diehl, M., Boukai, A., Wong, E. W., Yang, X., Chung, S-W., Choi, H. and Heath, J. R., Agnew. Chem. Int. Ed., 9, 40 (2001).Google Scholar
5. Shadler, L. S., Giannaris, S. C. and Ajayan, P. M., Apply. Phys. Lettrs., 73, No. 26, 3842 (1998).Google Scholar
6. Qian, D., Dickey, E. C., Andrews, R. and Rantell, T., Apply. Phys. Lettrs., 76, No. 20, 2868 (2000).Google Scholar
7. Bower, C., Rosen, R., Jin, L. and Zhou, O., Apply. Phys. Lettrs., 74, No. 22, 3317 (1999).Google Scholar
8. Jin, L., Bower, C. and Zhou, O., Apply. Phys. Lettrs., 73, No. 9, 1197 (1998).Google Scholar
9. Lourie, O. and Wagner, H. d., Apply. Phys. Lettrs., 73, No. 24, 3527 (1998).Google Scholar
10. Jia, Z., Wang, Z., Xu, C., Liang, J., Wei, B., Wu, B. and Wu, D., Mater. Sci. and Eng., A271, 395 (1999).Google Scholar
11. Banhart, F., Nano Lettrs, 1, No 6, 329 (2001).Google Scholar
12. Krasheninnikov, A. V., Nordlund, K., Sirvio, M., Salonen, E. and Keinonen, J., Phys. Rev., 63, 245405 (2001).Google Scholar
13. Kiang, K. H., Goddard, W. A. III, Beyers, R. and Bethune, D. S., J. Phys. Chem., 100, 3749 (1996).Google Scholar
14. McCarthy, B., Coleman, J. N., Curran, S. A., Dalton, A. B., Davey, A. p., Konya, Z., Fonseca, A., Nagy, J. B. and Blau, W. J., J. Mater. Sci. Lettrs., 19, 2239 (2000).Google Scholar
15. Hwang, G. L. and Hwang, K. C.,Google Scholar
16. Koshio, A., Yudasaka, M., Zhang, M. and Iijima, S., Nano Lettrs, 0, No 0, est. 2.7 (2001).Google Scholar
17. Niyogi, S., Hu, H., Hamon, M. A., Bhowmik, P., Zhao, B., Rozenzhak, S. M., Chen, J., Itkis, M. E., Meier, M. S. and Haddon, R. C., J. Amer. Chem. Soc., 123, 733 (2001).Google Scholar
18. Hamon, M. A., Chen, J., Hu, H., Chen, Y., Itkis, M. E., Rao, A. M., Eklund, P. C. and Haddon, R. C., Adv. Mater., 11, No. 10, 834 (1999).Google Scholar
19. Sun, Y., Wilson, S. R., and Schuster, D. I., J. Amer. Chem. Soc., 123, 5348 (2001).Google Scholar
20. Satishkumar, B. C., Govindaraj, A., Mofokeng, J., Subbanna, G. N., and Rao, C. N. R., J, Phys, B, At. Mol. Opt. Phys, 29, 4925 (1996).Google Scholar
21. Collins, E., Bares, J., Billmeyer, F.W.. Experiments in Polymer Chemistry, (Wiley, 1973).Google Scholar
22. Thess, A.; Lee, R.; Nikolaev, Pl; Dai, H.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G. Colbert, D. T.; Scuseria, G. E.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483.Google Scholar
23. Liu, J. Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Inverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y.-S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253.Google Scholar
24. Garrett, R. G., Hill, D., Le, T., Milne, K., O'Donnell, J., Perera, S., and Pomery, P., “Temperature Dependence of the Radiation Chemsitry of Polymers,” Radiation Effects in Polymers, eds. Clough, R. L. and Shalaby, S., ACS Symposium Series 475 ( ACS 1991) 150.Google Scholar
25. Guillot, J., Polymer Photophysics and Photochemistry, (Cambridge University Press 1985) 361.Google Scholar
26. Clough, R. l., Gillen, k. T. and Dole, M., Irradiation Effects on Polymers, eds. Cleggand, D. W. Collyer, A. A., (Elsevier Applied Science, 1991) 117.Google Scholar
27. Gao, H., Harmon, J. P., Thermochimica Acta, 284, 85, (1996)Google Scholar
28. Rao, R., J. Chem. Phys. 9, 682, (1941).Google Scholar
29. Krevelan, D.W. Van and Hoftyzer, P.J.., Properties of Polymers (Elsevier, 1970)Google Scholar
30. Bertolucci, P.R.H. and Harmon, J.P., “Dipole-Dipole Interactions in Controlled Refractive Index Polymers,” Photonic and Optoelectronic Polymers, 79.Google Scholar
31. Higgenbotham, P.R.-Bertolucci, Gao, H. and Harmon, J.P., Polymer Engineering and Science, 41, 873, (2001).Google Scholar
32. Emran, S.K., Liu, Y., Newkome, G.R., Harmon, J.P., Journal of Polymer Science, Part B: Polymer Physics, 39, 1381, (2001).Google Scholar
33. Calves, M.C. and Harmon, J.P. “Miscibility Investigation of Fluorocarbon Copolymer and Methacrylate Copolymer Blends”, Optical Polymers Fibers and Waveguides” eds. Harmon, J.P. and Noren, G.K., ACS Symposium Series 795 ( ACS 1999) 91.Google Scholar
34. Emran, S.K., Newkome, G.R., Weis, C.D., Harmon, J.P., Journal of Polymer Science: Part B: Polymer Physics, 37, 3025, (1999).Google Scholar
35.DEA 2970 Dielectric Analyzer, TA-057, TA Instruments.Google Scholar