Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T04:52:33.242Z Has data issue: false hasContentIssue false

Ionic Electroactive Polymer Actuators with Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes

Published online by Cambridge University Press:  21 March 2011

Yang Liu
Affiliation:
Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 U.S.A.
Sheng Liu
Affiliation:
Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 U.S.A.
Hülya Cebeci
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 U.S.A.
Roberto Guzman de Villoria
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 U.S.A.
Jun-Hong Lin
Affiliation:
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.
Brian L. Wardle
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 U.S.A.
Q. M. Zhang
Affiliation:
Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 U.S.A. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.
Get access

Abstract

Recent advances in fabricating controlled-morphology vertically aligned carbon nanotube (VA-CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic polymer conductor network composite actuators (IPCNCs). Actuator experiments show that the continuous paths through inter-VA-CNT channels and low electrical conduction resistance due to the continuous CNTs in the composite electrodes of the IPCNC lead to fast ion transport and actuation speed (>10% strain/second). One critical issue in developing advanced actuator materials is how to suppress or eliminate unwanted strains generated under electric stimulation, which reduce the actuation efficiency and also the actuation strains. We observe that the VA-CNTs in the composite electrodes yields non-isotropic elastic modulus that suppresses the unwanted strain and markedly enhances the actuation strain (>8% strain under 4 volts). A transmission line model has been developed to understand the electrical properties of the actuator device.

Type
Other
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bar-Cohen, Y., Zhang, Q. M., MRS Bull. 2008, 33, 173.CrossRefGoogle Scholar
[2] Bar-Cohen, Y., SPIE EXPRESS, Bellingham, WA, USA 2004.Google Scholar
[3] Madden, J. D. W., Vandesteeg, N. A., Anquetil, P. A., Madden, P. G. A., Takshi, A., Pytel, R. Z., Lafontaine, S. R., Wieringa, P. A., Hunter, I. W., IEEE J. Ocean. Eng. 2004, 29, 706.CrossRefGoogle Scholar
[4] Garcia, E. J., Hart, A. J., Wardle, B. L., Slocum, A. H., Nanotechnology, 2007, 18, 65602.CrossRefGoogle Scholar
[5] Wardle, B. L., Saito, D. S., Garcia, E. J., Hart, A. J., de Villoria, R. G., Verploegen, E. A., Adv. Mater. 2008, 20, 2707.CrossRefGoogle Scholar
[6] Futaba, D. N., Hata, K., Yamada, T., Hiraoka, T., Hayamizu, Y., Kakudate, Y., Tanaike, O., Hatori, H., Yumura, M., Iijima, S., Nature Mater. 2006, 5, 987.CrossRefGoogle Scholar
[7] Liu, S., Liu, Y., Cebeci, H., Guzmán de Villoria, R., Lin, J.-H., Wardle, B.L. and Zhang, Q.M., Adv. Funct. Mater., 2010, 20, 32663271.CrossRefGoogle Scholar
[8] Akle, B. J., Leo, D. J., Intell, J.. Mater. Syst. Struct. 2008, 19, 905.CrossRefGoogle Scholar
[9] Oguro, K., Kawami, Y., Takenaka, H., J. Micromachine Soc. 1992, 5.Google Scholar
[10] Shahinpoor, M., J. Intell. Mater. Syst. Struct. 1995, 6, 307.CrossRefGoogle Scholar
[11] Shahinpoor, M., Bar-Cohen, Y., Simpson, J. O., Smith, J., Smart Mater. Struct. 1998, 7, R15.Google Scholar
[12] Paquette, J. W., Kim, K. J., IEEE J. Ocean. Eng. 2004, 29, 729.CrossRefGoogle Scholar
[13] Nemat-Nasser, S., Wu, Y. X., J. Appl. Phys. 2003, 93, 5255.CrossRefGoogle Scholar
[14] Kim, D., Kim, K. J., Tak, Y., Appl. Phys. Lett. 2007, 90, 184104.CrossRefGoogle Scholar
[15] Bennett, M. D., Leo, D. J., Sens. Actuators, A 2004, 115, 79.CrossRefGoogle Scholar
[16] Hart, A. J., Slocum, A. H., J. Phys. Chem. B 2006, 110, 8250.CrossRefGoogle Scholar
[17] Garcia, E. J., Hart, A. J., Wardle, B. L., AIAA J. 2008, 46, 1405.CrossRefGoogle Scholar
[18] Hart, A. J., Slocum, A. H., Nano Lett. 2006, 6, 1254.CrossRefGoogle Scholar
[19] Liu, S., Montazami, R., Liu, Y., Jain, V., Lin, M. R., Heflin, J. R., Zhang, Q. M., Appl. Phys. Lett. 2009, 95, 023505.CrossRefGoogle Scholar
[20] Akle, B. J., Bennett, M. D., Leo, D. J., Sens. Actuators, A 2006, 126, 173.CrossRefGoogle Scholar
[21] Park, I. S., Jung, K., Kim, D., Kim, S. M., Kim, K. J., MRS Bull. 2008, 33, 190.CrossRefGoogle Scholar
[22] Liu, S., Liu, W. J., Liu, Y., Lin, J. H., Zhou, X., Janik, M. J., Colby, R. H., Zhang, Q. M., Polym. Int. 2010, 59, 321.CrossRefGoogle Scholar
[23] Liu, S., Montazami, R., Liu, Y., Jain, V., Lin, M. R., Zhou, X., Heflin, J. R., Zhang, Q. M., Sens. Actuators A 2010, 157, 267.CrossRefGoogle Scholar
[24] De Levie, R., Adv. Electrochem. Electrochem. Eng., 1967, 6, 329.Google Scholar