Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T23:53:56.832Z Has data issue: false hasContentIssue false

Ionic Association of Lithium Triflate in Glymes, Model Solvents, and High Molecular Weight Poly(Ethylene Oxide)

Published online by Cambridge University Press:  16 February 2011

R. Frech
Affiliation:
University of Oklahoma, Department of Chemistry, 620 Parrington Oval, Norman, OK 73019
W. Huang
Affiliation:
University of Oklahoma, Department of Chemistry, 620 Parrington Oval, Norman, OK 73019
M. A. K. L. Dissanayake
Affiliation:
University of Perideniya, Department of Physics, Sri Lanka
Get access

Abstract

Ionic association in lithium trifluoromethanesulfonate (triflate) dissolved in glymes, glycols, model solvents, and high molecular weight poly(ethylene oxide) is studied by analysis of vibrational band structure. Surprisingly, the CF3 symmetric deformation mode is shown to be the most accurate measure of ionic association and the reasons for this are discussed. The nature of various associated lithium triflate species as deduced from ab initio calculations is supported by spectral data presented here. A weak interaction of the triflate anion with certain solvent molecules containing an alcohol OH group is observed. Finally the temperature dependence of ionic association in a complex of lithium triflate and high molecular weight poly(ethylene oxide) is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dupon, R., Papke, L., Ratner, M. A., Whitmore, D. H. and Shriver, D. F., J. Am. Chem. Soc. 104, 6247 (1982).Google Scholar
2. Schantz, S., Torell, L. M., and Stevens, J. R., J. Appl. Phys. 64, 2038 (1988).Google Scholar
3. Kakihana, M., Schantz, S., Torell, L. M., and Börjesson, L., Mat. Res. Symp. Proc. 351, 135 (1989).Google Scholar
4. Schantz, S. and Torell, L. M., Solid State Ionics 60, 47 (1993).Google Scholar
5. Manning, J. P., Frech, R. and Hwang, E., Polymer 31, 2245 (1990).Google Scholar
6. Frech, R., Manning, J. P., and Black, B., Polymer 60, 1785 (1989).Google Scholar
7. Frech, R. and Manning, J. P., Electrochim. Acta 37, 1499 (1992).Google Scholar
8. Torell, L.M. and Schantz, S. in Polymer Electrolyte Reviews 1; edited by MacCallum, J. R. and Vincent, C. A. (Elsevier Applied Science: London, 1989) p. 1.Google Scholar
9. Schantz, S., Sadahl, J. and Börjesson, L., Torell, L.M. and Stevens, J. R., Solid State Ionics 128-30, 1047 (1988).Google Scholar
10. Schantz, S., Torell, L.W. and Stevens, J.R., J. Chem. Phys. 94, 6862 (1991).Google Scholar
11. Manning, J. and Frech, R., Polymer 33, 6862 (1992).Google Scholar
12. Schantz, S., J. Chem. Phys. 94, 6296 (1991).Google Scholar
13. Schantz, S. and Torell, L.M. Solid State Ionics, 60, 47 (1993).Google Scholar
14. Peterson, G., Jacobsson, P. and Torell, L.M., Electrochim. Acta 37, 1495 (1992).Google Scholar
15. Huang, W. and Frech, R., Polymer 35, 235 (1994)Google Scholar
16. Wendsjö, Å., Lindgren, J., Thomas, J. O. and Farrington, G. C., Solid State Ionics, 53-56, 1077 (1992).Google Scholar
17. Wendsjö, Å., Lindgren, J. and Paluszkiewicz, C., Electrochim. Acta 37, 1689 (1992).Google Scholar
18. Berson, A. and Lindgren, J., Solid State Ionics 60, 31 (1993).Google Scholar
19. Wendsjö, Å.. Thomas, O. and Lindgren, J., Polymer 34, 2243 (1993).Google Scholar
20. Petersen, G, Torell, L.M., Panero, S., Scrosati, B., Silva, C.J. da and Smith, M. Solid State Ionics, 60, 55 (1993).Google Scholar
21. Frech, R. and Huang, W., Solid State Ionics 66, 183 (1993).Google Scholar
22. Frech, R. and Huang, W., J. Sol. Chem. 23, 469 (1994).Google Scholar
23. Huang, W., Ph.D. Dissertation, The University of Oklahoma, Norman, OK, (1994).Google Scholar