Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-02T23:32:21.557Z Has data issue: false hasContentIssue false

Ion-Beam-Modified Interfacial Growth of Tungsten Disilicide

Published online by Cambridge University Press:  26 February 2011

E. Ma
Affiliation:
California Institute of Technology, Pasadena, CA 91125
N. S. Alvi
Affiliation:
Delco Electronics Corporation, 700 East Firmin Street, Kokomo IN 46902
A. H. Hamdi
Affiliation:
Electronics Department, General Motors Research Laboratories, Warren, MI 48090-9055
M-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Preimplantation of phosphorous is used in this work to promote the lateral uniformity of the interfacial WSi2 layer that grows upon subsequent thermal annealing of a thin W film sputter-deposited on a monocrystalline Si substrate. A phosphorous dose of 7.5x1015 P/cm2 yields an intermixed layer at the interface and the formation of the low-temperature hexagonal WSi2 phase. Subseqent vacuum furnace annealing at temperatures from 630°C to 715°C leads to a laterally uniform growth of tetragonal WSi2. The kinetics concur with those of previous reports for diffusion-limited growth of WSi2. All the available data fit well with a common growth law of x2 =kt, in which x is the thickness of the silicide layer, t is the annealing duration and k is the growth constant. The growth constant is given by k=1.5x104(cm2/s)exp(Ea/kBT), where the activation energy Ea=3.5±0.3 eV. Possible factors responsible for the beneficial effect of ion mixing on the interfacial silicide growth is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Locker, L. D. and Capio, C. D., J. Appl. Phys. 44, 4366 1973.Google Scholar
2. Nicolet, M-A. and Lau, S. S., in VLSI Microstructure Science, edited by Einspruch, N. G., Vol. 6, Academic Press, New York, 458 (1983).Google Scholar
3. Siegal, M., Santiago, J. J. and Spiegel, J. van der, in Rapid Thermal Processing, Mater. Res. Soc. Symp. Proc. 52, 289 1986.Google Scholar
4. Goltz, G., Torres, J., Lajzerowicz, J. Jr., and Bomchil, G., Thin Solid Films 124, 19 1986.Google Scholar
5. Ma, E., Lim, B. S, Nicolet, M-A., Alvi, N.S. and Hamdi, A. H., J. Elect. Mater. 17(3), 207 (1988).Google Scholar
6. Torres, J., Pelissier, A., Perio, A., Oberlin, J. C. and Bomchil, G., Le vide, les couches minces 42(236), 91 (1987).Google Scholar
7. Tsaur, B-Y., Chen, C. K., Anderson, C. H. Jr., and Kwong, D. L., J. Appl. Phys. 57, 1890 1985.Google Scholar
8. Bomchil, G., Goltz, G. and Torres, J., Thin Solid Films 140, 59 1986.Google Scholar
9. d'Heurle, F. M. and Gas, P., J. Mater. Res. 1, 205 1986.Google Scholar
10. Lajerowicz, J. Jr., Torres, J., Goltz, G. and Pantel, R., Thin Solid Films 140, 23 1986.Google Scholar
11. see Ref. 5 and references therein.Google Scholar
12. d'Heurle, F. M., Peterson, C. S. and Tsai, M. Y., J. Appl. Phys. 51, 5976 1980.CrossRefGoogle Scholar
13. Tsai, M. Y., d'Heurle, F. M., Peterson, C. S. and Johnson, R. W., J. Appl. Phys. 52, 5350 1981.Google Scholar
14. Ziegler, J. F., Biersack, J. P. and Cuomo, G., TRIM-88 code.Google Scholar
15. see for example, Torres, J., Thomas, O., Jourdain, D., madar, R., Perio, A. and Senatrur, J. P., Le vide, les couches minces, 42(236), 87 (1987).Google Scholar