Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-25T01:51:00.542Z Has data issue: false hasContentIssue false

Ion Implantation of Polymers

Published online by Cambridge University Press:  25 February 2011

M.S. Dresselhaus
Affiliation:
Center for Materials Science and Engineering; Department of Electrical Engineering and Computer Science; Department of Physics;
B. Wasserman
Affiliation:
Center for Materials Science and Engineering; Department of Physics;
G.E. Wnek
Affiliation:
Center for Materials Science and Engineering; Department of Materials Science and Engineering;, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ion implantation provides a mechanism for radically modifying the electronic and transport properties of a variety of polymers that are normally insulating. By using masks and tailoring the implanted species and ion energies, conducting paths in an insulating medium can be fabricated between specific reference points, an application of obvious relevance to the microelectronics industry. Specific results are reported for modification of the structure, electrical conductivity, thermoelectric-power, optical transmission and electron spin resonance for several polymers under a variety of implantation conditions. The temperature and frequency dependence of the conductivity suggest a onedimensional variable range hopping mechanism for conduction along the polymer chains. Comparison is made between implantation in the 200 keV and 2 MeV energy ranges.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

References

REFERENCES

1. Elman, B.S., Dresselhaus, M.S., Braunstein, G., Dresselhaus, G., Venkatesan, T., Wilkens, B., and Gibson, J.M., Proceedings of this Symposium.Google Scholar
2. Venkatesan, T., Forrest, S.R., Kaplan, M.L., Murray, C.A., Schmidt, P.H., and Wilkens, B.J., J. Appl. Phys. 54 3150(1983).Google Scholar
3. Hall, T.M., Wagner, A. and Thompson, L.F., J. Appl. Phys. 53 3997(1982).Google Scholar
4. Abel, J.S., Mazurek, H., Day, D. R., Maby, E.W., Senturia, S.D., Dresselhaus, G., and Dresselhaus, M.S., in Metastable Materials Formation by Ion Implantation, Proceedings of the MRS Symposium on Ion Implantation, edited by Picraux, S.T. and Choyke, W.J., North Holland, New York 1982, Vol. 7, p. 173.Google Scholar
5. Mazurek, H., Day, D.R., Maby, E.W., Abel, J.S., Senturia, S.D., Dresselhaus, G., and Dresselhaus, M.S., J. Polymer Science, Polymer Physics Edition21 539 (1983).Google Scholar
6. Wasserman, B., Dresselhaus, M.S. and Wnek, G., Proceedings of this Symposium.Google Scholar
7. Forrest, S.R., Kaplan, M.L., Schmidt, P.H., Venkatesan, T., and Lovinger, A.J., Appl. Phys. Lett. 41 708 (1982).Google Scholar
8. Kaplan, M.L., Forrest, S.R., Schmidt, P.H., Venkatesan, T. and Lovinger, A.J. (unpublished).Google Scholar
9. Allen, W.N., Brant, P., Carosella, C.A., DeCorpo, J.J., Ewing, C.T., Saalfeld, F.E., and Weber, D.C., Synthetic Metals 1, 151 (1980).Google Scholar
10. Weber, D.C., Brant, P., Carosella, C.A., Banks, L.G., J.C.S. Chem. Commun. 198, 522 (1981).Google Scholar
11. Weber, D.C., Brant, P., and Carosella, C.A., in Metastable Materials Formation by Ion Implantation, Proceedings of the MRS Symposium on Ion Implantation, edited by Picraux, S.T. and Choyke, W.J., North Holland, New York 1982, Vol. 7, p. 173.Google Scholar
12. Venkatesan, T., Brown, W.L., Murray, C.A., Marcantonio, K.J., and Wilkins, B.J. (unpublished);Google Scholar
Venkatesan, T., Edelson, D. and Brown, W.L. (unpublished).Google Scholar
13. Lindhard, J., Scharff, M., Schiott, H.E., Mat. Fys. Medd. Dan. Vid. Selsk. 33 14 (1963).Google Scholar
14. Wnek, G.E., Loh, I.-H. and Wasserman, B., (to be published).Google Scholar
15. Wintersgill, M.C., 2 nd Int. Conf. on Radiation Effects in Insulators Albuquerque, NM (1983)p. 92.Google Scholar
16. Wasserman, B. (unpublished).Google Scholar
17. Sheng, P., Abeles, B. and Arie, Y., Phys. Rev. Lett. 31 44 (1973);Google Scholar
Abeles, B., Sheng, P., Coutts, M.D., and Arie, Y., Adv. in Phys. 24 407 (1975).Google Scholar
18. Gogolin, A.A., Physics Reports 86 1 (1982).Google Scholar
19. Kawabata, A. and Kubo, R., J. Phys. Soc. Jpn. 21 284 (1966).Google Scholar
20. Mott, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials, (Clarendon Press, Oxford, 1979) p. 287293.Google Scholar
21. Szeto, Y.K., BS Thesis, Univ. of Toronto,1980(unpublished);Google Scholar
Landauer, R., AIP Conference Proceedings, No.40 edited by J.C. Garland and D.B. Tanner, American Institute of Physics (1978), p. 2.Google Scholar
22. Onishi, S., Ikeda, Y., Sugimoto, S. and Nitta, I., J. Polymer Science 47 503 (1960).Google Scholar