Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T21:36:07.886Z Has data issue: false hasContentIssue false

Ion Implantation in InSb Grown on GaAs

Published online by Cambridge University Press:  25 February 2011

M. V. Rao
Affiliation:
Department of Electrical & Computer Engineering, George Mason University, Fairfax, VA 22030
R. Echard
Affiliation:
Department of Electrical & Computer Engineering, George Mason University, Fairfax, VA 22030
P. E. Thompson
Affiliation:
Department of Electrical & Computer Engineering, George Mason University, Fairfax, VA 22030
A. K. Berry
Affiliation:
Department of Electrical & Computer Engineering, George Mason University, Fairfax, VA 22030
S. Mulpuri
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
F. G. Moore
Affiliation:
NRC/NRL Associate, Washington, D.C. 20375
Get access

Abstract

Be, S, Si, and Ne implantations were performed at room temperature into InSb layers grown on undoped semi-insulating GaAs substrates. The implant damage in InSb is of ntype behavior. The implanted material was subjected to both isochronal and isothermal annealing schemes using a molybdenum strip heater. A maximum p-type activation of 90 % and si-type activation of 16 % was achieved for Be and S implants, respectively. Si implant has an amphoteric doping behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davis, J. L. and Thompson, P. E., Appl. Phys. Lett. 54, 2235 (1989).Google Scholar
2. Oh, J. E., Bhattacharya, P. K., Chen, Y. C., and Tsukamoto, S., J. Appl. Phys. 66, 3618 (1989).Google Scholar
3. McNally, P. J., Radiat. Effects 6, 149 (1970).Google Scholar
4. Hurwitz, C. E. and Donnelly, J. P., Solid-state Electron. 18, 753 (1975).Google Scholar
5. Wiedeburg, K. H., Berz, H., and Kranz, H., Phys. Status Solidi A 31, K69 (1975).Google Scholar
6. Guseva, M. I., Mansurova, A. N., Tikhonov, V. C., and Khorvat, S. N., Sov. Phys. Semicond. 10, 872 (1976).Google Scholar
7. Bogotyrev, V. A. and Kachurin, G. A., Soy. Phys. Semicond. 11, 798 (1977).Google Scholar
8. Fujisawa, I., Jpn. J. Appl. Phys. 19, 2137 (1980).Google Scholar
9. Pearton, S. J., Nakahara, S., Neida, A. R. Von, Short, K. T., and Oster, L. J., J. Appl. Phys. 66, 1942 (1989).Google Scholar
10. Parker, S. D., Williams, R. L., Droopad, R., Stradling, R. A., Barnham, K. W. J., Holmes, S. N., Laverty, J., Phillips, C. C., Skuras, E., Thomas, R., Zhang, X., Staton-Bevon, A., and Pashey, D. W., Semicond. Sci. Technol. 4, 663 (1989).Google Scholar
11. Williams, R. L., Skuras, E., Stradling, R. A., Droopad, R., Holmes, S. N., and Parker, S. D., Semicond. Sci. Technol. 5, S338 (1990).Google Scholar
12. Glazov, V. M. and Smirnova, E. B., Soy. Phys. Semicond. 17, 1177 (1983).Google Scholar