Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T00:17:37.190Z Has data issue: false hasContentIssue false

Ion Implantation and RTA in III-V Materials

Published online by Cambridge University Press:  21 February 2011

B. G. Streetman
Affiliation:
Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78712.
A. Dodabalapur
Affiliation:
Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78712.
Get access

Abstract

We review the applications of ion implantation in several III-V materials, and rapid thermal annealing techniques to activate the implant and remove the crystalline damage. Ion implantation has become the preferred technique when selective area doping is necessary. It has been used successfully to fabricate n, n+, p, p+, and semi-insulating regions in III-V binary, ternary, and quaternary compounds, and multilayer structures. Ion implantation has also been used to produce layer mixing in multilayer structures, and superlattice disordering. The annealing step necessary to activate the implant and remove the crystalline damage is complicated by several factors such as incongruent evaporation of the group V element, layer mixing, and dopant redistribution. Rapid thermal annealing techniques, which typically employ anneal times between 1 second and 100 seconds, are generally more suitable than conventional furnace annealing. The short annealing times result in much less dopant redistribution, and reduced layer mixing in multilayer structures. Even for short annealing times, it is necessary to employ a protection scheme to suppress the loss of the group V element. Several such methods are discussed, including dielectric encapsulation, proximity techniques, and controlled ambient techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S.J., Poate, J.M., Sette, F., Gibson, G.M., Jacobson, D.C., and Williams, J.S., Nuclear Instrum. Methods B19/20, 369 (1987).CrossRefGoogle Scholar
2. Donnelly, J.P., Nuclear Instrum. Methods 182/183 553 (1981).Google Scholar
3. Nishi, H., Nuclear Instrum. Methods B7/8, 395 (1985).CrossRefGoogle Scholar
4. Farley, C.W. and Streetman, B. G., Mat. Res. Soc. Symp. Proc. 45, 21 (1985).Google Scholar
5. Sadana, D.K., Nuclear Instrum. Methods B7/8. 375 (1985).Google Scholar
6. Farley, C.W. and Streetman, B.G., J. Electron. Mater. 13, 401 (1984).CrossRefGoogle Scholar
7. Rytova, N.S. and Fistul, V.I., Sov. Phys. Semicond. 4, 939 (1970).Google Scholar
8. Ryssel, H. and Ruge, I., Ion Implantation, (Wiley, New York, 1986).Google Scholar
9. Baumann, G.G., Benz, K.W., and Pilkhun, M.H., J. Electrochem. Soc. 123, 1232 (1976).Google Scholar
10. Zeisse, C.R., Wilson, R.G., and Hopkins, C.G., J. Appl. Phys. 57 1656 (1985).CrossRefGoogle Scholar
11. Ghandhi, S.K., VLSI Fabrication Principles, (Wiley, New York, 1983).Google Scholar
12. Adachi, S., J. Appl. Phys. 63. 64 (1988).Google Scholar
13. Donnelly, J.P. and Ferrante, G.A., Solid State Electron. 23, 1151 (1980).Google Scholar
14. Krautle, H., Nuclear Instrum. Methods 182/183 625 (1981).CrossRefGoogle Scholar
15. Kim, T.S., PhD Dissertation, The University of Texas, 1987.Google Scholar
16. Anderson, C.L. and Dunlap, H.L., Appl. Phys. Lett. 35 178 (1979).Google Scholar
17. Konig, U., Hilgarth, J., and Tiemann, H.-H., J. Electron. Mater. 14. 311 (1985).Google Scholar
18. Favennec, P.N., L'Haridon, H., Roquais, J.M., Salvi, M., Cleach, X. Le, and Gouskov, L., Appl. Phys. Lett. 48. 154 (1986).Google Scholar
19. Farley, C. W. and Streetman, B.G., J. Electrochem. Soc. 134. 453 (1987).Google Scholar
20. Wang, K.-W., Appl. Phys. Lett. 51.2127 (1987).Google Scholar
21. Wang, K.-W., Long, J., and Mitcham, D., J. Appl. Phys. 15 April 1988.Google Scholar
22. Patel, K.K. and Sealy, B.J., Appl. Phys. Lett. 48, 1467 (1986).Google Scholar
23. Arnold, G.W., Picraux, S.T., Peercy, P.S., Myers, D.R., and Dawson, L.R., Appl. Phys. Lett. 45, 382 (1984).Google Scholar
24. Myers, D.R., Biefeld, R.M., Fritz, I.J., Picraux, S.T., and Zipperian, T.E., Appl. Phys. Lett. 44, 1052 (1984).Google Scholar
25. Hamdi, A.H., Tandon, J.L., Nicolet, M.-A., Mat. Res. Soc. Symp. Proc. 37 319 (1986).Google Scholar
26. Picraux, S.T., Arnold, G.W., Myers, D.R., Biefeld, R.M., Fritz, I.J., and Zipperian, T.E., Nuclear Instrum. Methods B7/8, 453 (1985).Google Scholar
27. Myers, D.R., Wiczer, J.J., Zipperian, T.E., and Biefeld, R.M., IEEE Electron Device Lett. EDL–5, 326 (1984).Google Scholar
28. Pomrenke, G.S., Ennen, H., and Haydl, W., J. Appl. Phys. 59, 601 (1986).Google Scholar
29. Ennen, H., Pomrenke, G.S., and Axmann, A., J. Appl. Phys. 57, 2182 (1985).Google Scholar
30. Potts, H.R. and Pearson, G.L., J. Appl. Phys. 37, 2098 (1966).Google Scholar
31. Christel, L.A. and Gibbons, J.F., J. Appl. Phys. 52, 5050 (1981).Google Scholar
32. Gwilliam, R., Deol, R.S., Blunt, R., and Sealy, B.J., Mat. Res. Soc. Symp. Proc. 92, 437 (1987).Google Scholar
33. Farley, C.W., Kim, T.S., and Streetman, B.G., J. Electron. Mater. 16, 79 (1987).Google Scholar
34. Dodabalapur, A. and Streetman, B.G., to be presented at the 1988 Electronice Materials Conference, Boulder, Co., (unpublished).Google Scholar
35. Chan, S.S., Streetman, B.G., and Baker, J.E., J. Electrochem. Soc. 132, 2467 (1985).Google Scholar
36. Adachi, S., Appl. Phys. Lett. 51, 1161 (1987).Google Scholar
37. Davies, D.E., Kennedy, J.K., and Yang, A.C., Appl. Phys. Lett. 23, 615 (1973).CrossRefGoogle Scholar
38. Woodhouse, J.D., Donnelly, J.P., and Iseler, G.W., Solid State Electron. 31, 13 (1988).Google Scholar
39. Focht, M.W., Macrander, A.T., Schwartz, B., and Feldman, L.C., J. Appl. Phys. 55 3859 (1984).Google Scholar
40. Thomson, P.E., Binari, S.C., Dietrich, H.B., and Henry, R.L., Solid State Electron. 27, 817 (1984).Google Scholar
41. Tell, B., Brown-Goebeler, K.F., Bridges, T.J., and Burkhardt, E.G., J. Appl. Phys. 6, 665 (1986).Google Scholar
42. Pearton, S.J., Iannuzzi, M.P., Reynolds, C.L. Jr., and Peticolas, L., Appl. Phys. Lett. 52, 395 (1988).Google Scholar
43. Humer-Hager, T. and Zwicknagl, P., Appl. Phys. Lett. 5 63 (1988).Google Scholar
44. Cheng, J., Forrest, S. R., Tell, B., Wilt, D., Schwartz, B., and Wright, P., J. Appl. Phys. 58. 1787 (1985).Google Scholar
45. Asbeck, P.M., Miller, D.L., Anderson, R.J., and Eisen, F.H., IEEE Electron Device Lemt EDL–5. 310 (1984).Google Scholar
46. Baier, S. M., Lee, G.Y., Chung, H.K., Fure, B.J., and Cirillo, N.C., Elec. Lett. 23, 223 (1987).CrossRefGoogle Scholar
47. Lam, C.S. and Fonstad, C.G., IEEE Electron Device Lett. EDL–8, 563 (1987).Google Scholar
48. Graf, V., and Heuberger, W., Nuclear Instrum. Methods B19/20, 388 (1987).Google Scholar
49. Yamamoto, Y., Fujima, S., Takeda, H., Segawa, Y., Ishibashi, K., Shim, T.E., Itoh, T., and Suzuki, S., Nuclear Instrum. Methods 119/20,, 392 (1987).CrossRefGoogle Scholar
50. Tamura, A., Inoue, K., Onuma, T., and Sato, M., Appl. Phys. Lett. 51 1503 (1987).Google Scholar
51. Holonyak, N. Jr., Laidig, W.D., Camras, M.D., Coleman, J.J., and Dapkus, P.D., Appl. Phys. Lett. 39. 102 (1981).CrossRefGoogle Scholar
52. Coleman, J.J., Dapkus, P.D., Kirkpatrick, C.G., Camras, M.D., and Holonyak, N. Jr., Appl. Phys. Lett. 40, 904 (1982).Google Scholar
53. Hirayama, Y., Suzuki, Y., and Okamoto, H., Jpn. J. Appl. Phys. 1986, L651.Google Scholar
54. Kobayashi, J., Nakajima, M., Bamba, Y., Fukunaga, Y., Matsui, K., Nakashima, H., and Ishida, K., Jpn. J. Appl. Phys. 25, L385 (1986).CrossRefGoogle Scholar
55. Venkatesan, T., Schwartz, S.A., Hwang, D.M., Bhat, R., Yoon, H.W., and Arakawa, Y., Nuclear Instrum. Methods B19/20, 777 (1987).Google Scholar
56. Picraux, S.T., Arnold, G. W., Myers, D.R., Dawson, L.R., Biefeld, R.M., Fritz, I.J., and Zipperian, T.E., Nuclear Instrum. Methods B7/8, 453 (1985).Google Scholar
57. Block, T.R., Farley, C.W., and Streetman, B.G., J. Electrochem. Soc. 133, 450 (1986); Advanced Processing and Characterization of Semiconductors III. edited by D.K. Sadana and M.I. Current (SPIE Proc. 63 p 157, 1986.Google Scholar
58. Haydl, W.H., IEEE Electron Device Lett. EDL–5, 78 (1984).Google Scholar
59. Fan, W.D., Jiang, X.Y., Xia, G.Q., and Wang, W.Y., Inst. Phys. Conf. Ser. No. 83, 277 (1986).Google Scholar
60. Davies, D.E., Nuclear Instrum. Methods B7/8, 387 (1985).Google Scholar
61. Oberstar, J.D. and Streetman, B. G., Thin Solid Films, 103, 17 (1983).Google Scholar
62. Oberstar, J.D., Streetman, B.G., Baker, J.E., Finnegan, N.L., Sammann, E.A., and Williams, P., Thin Solid Films.94. 149 (1982).Google Scholar
63. Eisen, F.H., Welch, B.M., Muller, H., Gamo, K., Inada, T., and Mayer, J.W., Solid State Electron. 20. 219 (1977).Google Scholar
64. Bensalem, R., Abid, A., and Sealy, B.J., Thin Solid Films 143, 141 (1986).Google Scholar
65. Vaidyanathan, K.V., Anderson, C.L., Dunlap, H.L., and Holmes, D.E., Nuclear Instrum. Methods 182/183. 631 (1981).Google Scholar
66. Lidow, A., Gibbons, J. F., Magee, T., and Pen, J., J. Appl. Phys. 49., 5213 (1978).Google Scholar
67. Molnar, B., Appl. Phys. Lett. 36, 927(1980).Google Scholar
68. Woodall, J.M., Rupprecht, H., Chicotka, R.J., and Wicks, G., Appl. Phys. Lett 38, 639 (1981).Google Scholar
69. Farley, C.W. and Streetman, B.G., J. Electrochem. Soc. 134. 498 (1987).CrossRefGoogle Scholar
70. Lorenzo, J.P., Davies, D.E., Soda, K.J., Ryan, T.G., and McNally, P.J., Mat. Res. Soc. Symp. Proc. 13 683 (1983).Google Scholar
71. Dodabalapur, A., Farley, C.W., Lester, S.D., Kim, T.S., and Streetman, B. G., J. Electron. Mater. 16., 283 (1987).Google Scholar
72. Lee, C.T., Appl. Phys. Lett. 46, 554 (1985).Google Scholar
73. Armiento, C.A., Lehman, L.L., Prince, F.C., and Zemon, S., J. Electrochem. Soc. 134, 2010 (1987).Google Scholar
74. Woodhouse, J.D., Gaidis, M.C., Donnelly, J.P., and Armiento, C.A., Appl. Phys. Lett. 51, 186 (1987).Google Scholar
75. Barrett, N.J., Grange, J.D., Sealy, B.J., and Stephens, K.G., J. Appl. Phys. 51, 3503 (1984).Google Scholar
76. Reynolds, S., Vook, D.W., Opyd, W.G., and Gibbons, J. F., Appl. Phys. Lett. 51, 916 (1987).Google Scholar
77. Chaplain, R., Gauneau, M., L'Haridon, H., and Rupert, A., J. Appl. Phys. 58, 1803 (1985).Google Scholar
78. Campbell, P.M., Aina, O., and Baliga, B.J., J. Electron. Mater. 15. 125 (1986).Google Scholar
79. Campbell, P.M., Aina, O., and Baliga, B.J., Appl. Phys. Lett. 45, 95 (1984).Google Scholar
80. Henderson, T., Pearah, P., and Morkoc, H., Elec. Lett. 20, 371 (1984).Google Scholar
81. Tatsuta, S., Inata, T., Okamura, S., and Hiyamizu, S., Jpn. J. Appl. Phys. 23, L147 (1984).Google Scholar
82. Seo, K.S., Berger, P.R., Kothiyal, G.P., and Bhattacharya, P.K., IEEE Trans. Electron Devices ED–34, 235 (1987).Google Scholar
83. Kesan, V.P., Dodabalapur, A., Neikirk, D.P., and Streetman, B. G., (unpublished results).Google Scholar
84. Blunt, R.T., Lamb, M.S.M., Szweda, R., Appl. Phys. Lett. 47, 304 (1985).Google Scholar
85. Pomrenke, G.S., Park, Y.S., and Hengehold, R.L., J. Appl. Phys. 52. 969 (1981).Google Scholar
86. Kim, T.S., Lester, S.D., and Streetman, B.G., J. Appl. Phys. 61 1363 (1987).Google Scholar
87. Krautle, H., J. Appl. Phys. 15 April 1988.Google Scholar