Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T21:49:34.525Z Has data issue: false hasContentIssue false

Ion Energy Distributions in Silane-Hydrogen Plasmas

Published online by Cambridge University Press:  10 February 2011

E. A. G. Hamers
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
W. G. J. H. M. Van Sark
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
J. Bezemer
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
W. F. Van Der Weg
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
W. J. Goedheer
Affiliation:
FOM Institute for Plasmaphysics 'Rijnhuizen', P.O. Box 1207, NL-3430 BE Nieuwegein, the Netherlands.
Get access

Abstract

For the first time ion energy distributions (IED) of different ions from silane-hydrogen (SiH4-H2 ) RF plasmas are presented, i.e. the distributions of SiH3+, SiH2+ and SiH2+. The energy distributions of SiH3+ and SiH3+ ions show peaks, which are caused by a charge exchange process in the sheath. A method is presented by which the net charge density in the sheath is determined from the plasma potential and the energy positions of the charge exchange peaks. Knowing the net charge density in the sheath and the plasma potential, the sheath thickness can be determined and an estimation of the absolute ion fluxes can be made. The flux of ions can, at maximum, account for 10% of the observed deposition rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, J., Huppert, G. L., and Sawin, H. H., J. Appl. Phys. 68, 3916 (1990).Google Scholar
2. Fivaz, M., Brunner, S., Swarzenbach, W., Howling, A. A., and Hollenstein, C., Plasma Sources Sci. Technol. 4, 373 (1995).Google Scholar
3. Dahl, D. A., Delmore, J. E., and Appelhans, A. D., Rev. Sci. Instrum. 61, 607 (1990).Google Scholar
4. Hamers, E. A. G., van Sark, W. G. J. H. M., Bezemer, J., Goedheer, W. J., and van der Weg, W. F., (submitted to J. Vac. Sci. Technol. A).Google Scholar
5. Chapman, B., Glow Discharge Processes (John Wiley & Sons, New-York, N.Y., U.S.A., 1980).Google Scholar
6. Henis, J. M. S., Stewart, G. W., Tripodi, M. K., and Gaspar, P. P., J. Chem. Phys. 57, 389 (1972).Google Scholar
7. Chatham, H. and Gallagher, A., J. Appl. Phys. 58 (1985).Google Scholar
8. Chatham, H., Hils, D., Robertson, R., and Gallagher, A., J. Chem. Phys. 81, 1770 (1984).Google Scholar
9. Plasma deposition of amorphous silicon-based materials, edited by Bruno, G., Capezutto, P., and Madan, A. (Academic Press, San-Diego, Calif., U.S.A., 1995).Google Scholar
10. Wallinga, J., Knoesen, D., Hamers, E. A. G., van Sark, W. G. J. H. M, van der Weg, W. F., and Schropp, R. E. I., (this conference).Google Scholar