Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-06T05:22:42.507Z Has data issue: false hasContentIssue false

Ion Beam-Induced Amorphization of the Pyrochlore Structure-Type: A Review

Published online by Cambridge University Press:  01 February 2011

R. C. Ewing
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109–2104, USA
J. Lian
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109–2104, USA
L. M. Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109–2104, USA
Get access

Abstract

This paper reviews the recent developments in the understanding of the radiation-damage processes in A2B2O7 (Fd3m; Z=8) pyrochlore-structure compounds. Pyrochlore structure compounds display a wide range of behaviors in response to ion beam irradiation. Some compositions, such as Gd2Ti2O7, are amorphized at relatively low doses (∼0.2 dpa at room temperature) while other compositions, such as Gd2Zr2O7, do not amorphize (even at doses of 36 dpa at 25 K) and instead disorder to a defect fluorite structure. The response to ion beam irradiation is highly dependent on compositional changes that affect both the structural distortion from the ideal fluorite structure and the associated energetics of the disordering process. Generally, the ionic size of the cations plays a dominant role in determining the radiation response of different pyrochlore compositions. However, the cation ionic radius ratio criteria cannot be applied all-inclusively in predicting the radiation “tolerance” of a pyrochlore. Systematic irradiation studies of the radiation response of rare-earth (A-site) pyrochlores in which B = Ti, Zr, and Sn have shown that the behavior of the pyrochlore also depends on the cation electronic structure, i.e., the type of bonding, which is closely related to the polyhedral distortion and structural deviation from the ideal fluorite structure. These structural changes affect the dynamic defect recovery process directly linked to the material's response to and recovery from irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chakoumakos, B.C., J. Solid State Chemistry 53, 120 (1984).Google Scholar
[2] Ewing, R. C., Weber, W. J., and Lian, J., J. Appl. Phys., in press.Google Scholar
[3] Weber, W. J., Ewing, R. C., Catlow, C. R. A., de la Rubia, T.D., Hobbs, L. W., Kinoshita, C., Matzke, H., Motta, A. T., Nastasi, M., Salje, E. K. H., Vance, E. R., and Zinkle, S. J., J. Mater. Res. 13, 1434 (1998).Google Scholar
[4] Wang, S. X., Begg, B. D., Wang, L. M., Ewing, R. C., Weber, W. J., and Kutty, K. V. G., J. Mater. Res. 14, 4470 (1999).Google Scholar
[5] Wang, S. X., Wang, L. M., Ewing, R.C., and Govindan Kutty, K.V., MRS Symp. Proc. 540, 355 (1999).Google Scholar
[6] Sickafus, K. E., Minervini, L., Grimes, R. W., Valdez, J. A., Ishimaru, M., Li, F., McClellan, K. J., and Hartmann, T., Science 289, 748 (2000).Google Scholar
[7] Minervini, L., Grimes, R. W., and Sickafus, K. E., J. Am. Ceram. Soc. 83, 1873 (2000).Google Scholar
[8] Lian, J., Wang, L. M., Wang, S. X., Chen, J., Boatner, L. A., and Ewing, R. C., Phys. Rev. Lett. 87, 145901 (2001).Google Scholar
[9] Chakoumakos, B. C., Pyrochlore, McGraw-Hill, Yearbook of Science & Technology 1987, edited by Parker, S.P. (McGraw-Hill, Inc., New York, 1986) p. 393.Google Scholar
[10] Minervini, L., Grimes, R.W., Tabira, Y., Withers, R. L., Sickafus, K. E., Philosophical Magazine A 82, 123 (2002).Google Scholar
[11] Barker, W.W., White, P. S. and Knop, O., Canadian J. Chem. 54, 2316 (1976).Google Scholar
[12] Stanek, C. R., Minervini, L., Grimes, R.W., J. Am. Ceram. Soc. 85, 2792 (2002).Google Scholar
[13] Subramanian, M. A., Aravamudan, G. and Subba, G. V. Rao, Prog. Solid St. Chem. 15, 55 (1983).Google Scholar
[14] Chakoumakos, B. C. and Ewing, R. C., Mater. Res. Soc. Symp. Proc. 44, 641 (1985).Google Scholar
[15] Raison, P. E., Haire, R. G., Sato, T. and Ogawa, T., Mater. Res. Soc. Symp. Proc. 556, 3 (1999).Google Scholar
[16] Kulkarni, N. K., Sampath, S. and Venugopal, V., J. Nucl. Mater. 281, 248 (2000).Google Scholar
[17] Wang, S. X., Wang, L. M., Ewing, R. C., Was, G. S., and Lumpkin, G. R., Nucl. Instr. Meth. Phys. Res. B 148, 704 (1999).Google Scholar
[18] Lian, J., Wang, L., Chen, J., Sun, K., Ewing, R. C., Farmer, J. M., and Boatner, L. A., Acta Materialia 51, 1493 (2003).Google Scholar
[19] Lian, J., Zu, X. T., Kutty, K. V. G., Chen, J., Wang, L. M., and Ewing, R. C., Phys. Rev. B 66, 054108 (2002).Google Scholar
[20] Lian, J., Wang, L. M., Ewing, R. C., and Kennedy, B. J., J. Nucl. Mater., submitted.Google Scholar
[21] Heremans, C., Wuensch, B. J., Stalick, J. K., and Prince, E., J. Solid State Chemistry 117, 108 (1995).Google Scholar
[22] Wuensch, B. J., Eberman, K. W., Heremans, C., Ku, E. M., Onnerud, P., Yeo, E. M.E., Haile, S. M., Stalick, J. K., Jorgensen, J. D., Solid State Ionics 129, 111 (2000).Google Scholar
[23] Wuensch, B. J., and Eberman, K. W., JOM 52, 19 (2000).Google Scholar
[24] Kramer, S. A. and Tuller, H. L., Solid State Ionics 82, 15 (1995).Google Scholar
[25] Kramer, S., Spears, M., and Tuller, H. L., Solid State Ionics 72, 59 (1994).Google Scholar
[26] Williford, R. E., Weber, W. J., Devanathan, R., and Gale, J. D., J. Electroceram. 3, 409 (1999).Google Scholar
[27] Moon, P. K. and Tuller, H. L., Sensor Actuat. B-Chem. 1, 199 (1990).Google Scholar
[28] Tuller, H. L., Solid State Ionics 52, 135 (1992).Google Scholar
[29] Wilde, P. J. and Catlow, C. R. A., Solid State Ionics 112, 173 (1998).Google Scholar
[30] Wilde, P. J. and Catlow, C. R. A., Solid State Ionics 112, 185 (1998).Google Scholar
[31] Gibbons, J. G., Proc. IEEE 60, 1062 (1972).Google Scholar
[32] Weber, W. J., Ewing, R. C., Wang, L. M.. J. Mater. Res. 9, 688 (1994).Google Scholar
[33] Weber, W. J., J. Mater. Res. 5, 2686 (1990).Google Scholar
[34] Wang, S. X., Wang, L. M., and Ewing, R. C., Phys. Rev. B 63, 024105 (2001).Google Scholar
[35] Lian, J., Ewing, R. C., Wang, L. M., Helean, K. B and Tangeman, J., J. Mater. Res., submitted.Google Scholar
[36] Nastasi, M. and Mayer, J. W., Mater. Sci. Reports 6, 1 (1991).Google Scholar
[37] Lian, J., Chen, J., Wang, L. M., Ewing, R. C., Matt Farmer, J., Lynn A., Boatner, and Helean, K. B., Phys. Rev. B 68, 134107 (2003).Google Scholar
[38] Begg, B. D., Hess, N. J., Weber, W. J., Davanathan, R., Icenhower, J. P., Thevuthasan, S., McGrail, B. P., J. Nucl. Mater. 288, 208 (2001).Google Scholar
[39] Lian, J., Wang, L. M., Haire, R. G., Helean, K. B., and Ewing, R. C., Nucl. Instrum. Methods Phys. Res. B, in press.Google Scholar
[40] Kennedy, B. J., Hunter, B. A., and Howard, C. J., J. Solid State Chem. 130, 58 (1997).Google Scholar
[41] Panero, W. R., Stixrude, L. P., and Ewing, R. C., Phys. Rev. B, submitted.Google Scholar
[42] Meldrum, A., White, C. W., Keppens, V., Boatner, L. A., and Ewing, R. C., Phys. Rev. B 63, 104109 (2001).Google Scholar