Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T06:22:39.768Z Has data issue: false hasContentIssue false

Ion Beam-Assisted Deposition of Biaxially Aligned CeO2 and ZrO2 Thin Films on Amorphous Substrates

Published online by Cambridge University Press:  22 February 2011

Kevin G. Ressler
Affiliation:
Ceramics Processing Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Neville Sonnenberg
Affiliation:
Ceramics Processing Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Michael J. Cima
Affiliation:
Ceramics Processing Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Get access

Abstract

Deposition of HTSC and other films is often restricted to lattice-matched single crystal substrates to produce desired epitaxial films. Ion assisted, electron beam deposition (IBAD) has been used to evaporate biaxially aligned ceria and zirconia films on amorphous substrates, thus producing a surface for the deposition of oriented Ba2YCu3O7-δ films. The conditions at which preferential (200) film alignment is obtained has been optimized. The ion-to-atom ratio and ion beam energy are critical in determining beam effects on in-plane alignment Pole figures revealed that both (220) and (111) in-plane alignments parallel to the direction of the ion beam could be obtained depending on the ion-to-atom ratio. Certain orientations dominate at various temperature regimes on different substrates. The orientation regimes were similar on all substrates, but the temperature at which the trends were observed differed with substrate. Microstructures were correlated to orientations, with the desired (200) orientation being columnar. A mechanism to account for this biaxial alignment is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Iijima, Y., Tanabe, N., and Kohno, O., 4th International Symposium on Superconductivity, Oct 14–17, (1991), 517 Tokyo, Japan. Springer-Verlag, Berlin. Eds. Hayakaya, H. and Koshizula, N..Google Scholar
2 Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).Google Scholar
3 Reade, R. P., Berdahl, P., Russo, R. E., Garrison, S., App. Phys. Lett. 61, 2231 (1992).Google Scholar
4 Yu, L. S., Harper, J. M. E., Cuomo, J. J., and Smith, D. A., J. Vac. Sci. Technol. 4, 443 (1986).Google Scholar
5 Sonnenberg, N., Longo, A. S., Cima, M. J., Chang, B. P., Ressler, K. G., Mclntyre, P. C., and Liu, Y. P., J. Appl. Phys. 74 (2), 1993.Google Scholar
6 Fork, D. K., Garrison, S. M., Hawley, M., and Geballe, T. H., J. Mater. Res. 7 1641 (1192).Google Scholar
7 Wu, X. D., Dye, R. C., Muenchausen, R. E., Foltyn, S., Maley, M., Rollet, A. D., Garcia, A. R., and S Nogar, N., Appl. Phys. Lett. 58, 2429 (1191).Google Scholar
8 Skofronick, G. L., Carim, A. H., Foltyn, S. R. and Muenchausen, R. E., J. Mater. Res. 8, 11 (1993).Google Scholar
9 Mclntyre, P. C., Sonnenberg, N., Ressler, K. G., and Cima, M. J., Unpublished work.Google Scholar
10 Bradley, R. M., Harper, J. M. E., and Smith, D. A., J. Appl. Phys. 60, 4160 (1986).Google Scholar
11 Bradley, R. M., in Handbook of Ion Beam Processing Technology, edited by Cuomo, J. J., Rossnagel, S. M. and Kaufman, H. R., (Noyes Publ., Park Ridge, NJ, 1989).Google Scholar
12 Dirks, A. G. and Leamy, H. J., Thin Solid Films 47, 219 (1977).Google Scholar
13 Chang, B. P., Sonnenberg, N., Mclntyre, P. C. and Cima, M. J.. This proceedings paper number A17.21.Google Scholar