Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T16:25:20.223Z Has data issue: false hasContentIssue false

Ion Beam Synthesis By Tungsten Implantation Into 6h-Silicon Carbide At Elevated Temperatures

Published online by Cambridge University Press:  15 February 2011

Hannes Weishart
Affiliation:
Forschungszentrum Rossendorf e.V., Institut für Ionenstrahlphysik und Materialforschung, Postfach 510119, D-01314 Dresden, Germany
W. Matz
Affiliation:
Forschungszentrum Rossendorf e.V., Institut für Ionenstrahlphysik und Materialforschung, Postfach 510119, D-01314 Dresden, Germany
W. Skorupa
Affiliation:
Forschungszentrum Rossendorf e.V., Institut für Ionenstrahlphysik und Materialforschung, Postfach 510119, D-01314 Dresden, Germany
Get access

Abstract

We studied high dose implantation of tungsten into 6H-silicon carbide in order to synthesize an electrically conductive layer. Implantation was performed at 200 keV with a dose of 1×1017 W+cm−2 at temperatures of 90°C and 500°C. The samples were subsequently annealed either at 950°C or 1100°C. The influence of implantation and annealing temperatures on the reaction of W with SiC was investigated. Rutherford backscattering spectrometry (RBS), x-ray diffiraction (XRD) and Auger electron spectroscopy (AES) contributed to study the structure and composition of the implanted layer as well as the chemical state of the elements. The implantation temperature influences the depth distribution of C, Si and W as well as the damage production in SiC. The W depth profile exhibits a bimodal distribution for high temperature implantation and a customary gaussian distribution for room temperature implantation. Formation of tungsten carbide and silicide was observed in each sample already in the as-implanted state. Implantation at 90°C and annealing at 950°C lead to crystallization of W2C; tungsten silicide, however, remains amorphous. After implantation at 500°C and subsequent annealing at 11007deg;C crystalline W5Si3 forms, while tungsten carbide is amorphous.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nelson, W.E., Halden, F.A. and Rosengreen, A., J. Appl. Phys. 37, 333 (1966).Google Scholar
2. Pensl, G. and Helbig, R., Festkörperprobleme/Advances in Solid State Physics 30, 133 (1990).Google Scholar
3. Petit, J.B. and Zeller, M.V. in Wide Band Gap Semiconductors edited by Moustaka, T.D., Pankove, J.I., and Hamakawa, Y. (Mater. Res. Soc. Proc. 242, Pittsburgh, PA, 1992) pp. 567572.Google Scholar
4. Glass, R.C., Spelhnan, L.M., and Davis, R.F., Appl. Phys. Lett. 59, 2868 (1991).Google Scholar
5. Anikin, M.M., Rastegaeva, M.R., Syrkin, A.L., and Chuiko, I.V., Springer Proceedings in Physics 56, 183 (1992).Google Scholar
6. Crofton, J., Ferrero, J.M., Barnes, P.A., Williams, J.R., Bozack, M.J., Tin, C.C., Ellis, C.D., Spitznagel, J.A., and McMullin, P.G., Springer Proceedings in Physics 71, 176 (1992).Google Scholar
7. Dmitriev, V.A., Irvine, K., Spencer, M., and Kelner, G., Appl. Phys. Lett. 64, 318 (1994).Google Scholar
8. Chaddha, A.K., Parsons, J.D., and Kruaval, G.B., Appl. Phys. Lett. 66, 760 (1995).Google Scholar
9. Uemoto, T., Jpn. J. Appl. Phys. 34, L7 (1995).Google Scholar
10. Crofton, J., McMullin, P.G., Williams, J.R., and Bozack, M.J., J. Appl. Phys. 77, 1317 (1995).Google Scholar
11. Baud, L., Jaussaud, C., Madar, R., Bernard, C., Chen, J.S., and Nicolet, M.A., Mat. Sci. Eng. B29, 126 (1995).Google Scholar
12. Zhang, H., PhD thesis, Friedrich Alexander Universität Erlangen, 1990.Google Scholar
13. Geib, K.M., Wilson, C., Long, R.G., and Wilmsen, C.W., J. Appl. Phys. 68, 2796 (1990).Google Scholar
14. Jacob, C., Nishino, S., Mehregany, M., and Pirouz, P., in Silicon Carbide and Related Materials (Institute of Physics Publishing, Bristol and Philadelphia, 1994) ch.3 p.247.Google Scholar
15. Weishart, H., Schöneich, J., Steffen, H.-J., Matz, W., and Skorupa, W. in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by Luzzi, D.E., Heinz, T.F., Iwaki, M., and Jacobson, D.C. (Mater. Res. Soc. Proc. 354, Pittsburgh, PA, 1995) pp. 177182; Nucl. Instr. Meth. B10532, xxx (1996).Google Scholar
16. McHargue, C.J. and Williams, J.M., Nuc. Instr. Meth. B80/81, 889–94 (1993).Google Scholar
17. Heera, V., Kögler, R., Skorupa, W., and Stoemenos, J., Appl. Phys. Lett. 67, 1999 (1995).Google Scholar
18. Vardiman, R.G., Materials Science and Engineering A177, 209 (1994).Google Scholar
19. Murarka, S.P., in Silicides for VLSI Applications (Academic Press, Orlando, 1983) p. 30.Google Scholar