Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-14T19:18:11.527Z Has data issue: false hasContentIssue false

Ion Beam Processing of GaAs at Elevated Temperatures

Published online by Cambridge University Press:  26 February 2011

J. S. Williams
Affiliation:
Also: Department of Electronic Materials Engineering, R.S. Phys S., ANU, Canberra 2600, Australia.
R. G. Elliman
Affiliation:
Microelectronics and Materials Technology Centre, RMIT Melbourne 3000, Australia.
S. T. Johnson
Affiliation:
Microelectronics and Materials Technology Centre, RMIT Melbourne 3000, Australia.
D. K. Sengupta
Affiliation:
Microelectronics and Materials Technology Centre, RMIT Melbourne 3000, Australia.
J. M. Zemanski
Affiliation:
Microelectronics and Materials Technology Centre, RMIT Melbourne 3000, Australia.
Get access

Abstract

Elevated temperature ion bombardment of GaAs has been examined to investigate the nature of residual damage and the interplay between bombardment-induced defect production and dynamic annealing. The nature of disorder is found to depend strongly on ion energy, species, dose, dose rate and substrate temperature. A temperature regime is identified in which dynamic annealing leads both to the efficient formation of band gap traps for carrier removal and to the low temperature crystallization of pre-existing amorphous layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See, for example, Williams, J. S., Mat. Res. Soc. Symp. Proc. 13, 621 (1983).CrossRefGoogle Scholar
[2] Donnelly, J. P., Nucl. Instrum. Meth. 182/183, 553 (1981).CrossRefGoogle Scholar
[3] Williams, J. S. and Pearton, S. J., Mat. Res. Soc. Symp. Proc. 35, 427 (1985).CrossRefGoogle Scholar
[4] Pons, D. and Bourgoin, J. C., J.Phys. C: Sol. State Phys. C 18, 3839 (1985).CrossRefGoogle Scholar
[5] Wilson, R. G., Betts, D. A., Sadana, D. K., Zavada, J. M., and Hunsperger, R. G., J. Appl. Phys. 57, 5006 (1985).CrossRefGoogle Scholar
[6] Chin, P. K., Short, K. T. and Pearton, S. J., Appl. Phys. Lett. (in press).Google Scholar
[7] Sengupta, D., Zemanski, J. M., Williams, J. S., Johnson, S. T. and Pogany, A. P., Nucl. Instrum. Meth. B (in press).Google Scholar
[8] Johnson, S. T., Williams, J. S., Nygren, E. and Elliman, R. G., Mat. Res. Soc. Symp. Proc. 100, 423 (1988).CrossRefGoogle Scholar
[9] Johnson, S. T., Williams, J. S., Nygren, E. and Elliman, R. G., J. Appl. Phys. in press (1988).Google Scholar
[10] Johnson, S. T., Williams, J. S., Elliman, R. G., Pogany, A. P., Nygren, E. and Olson, G. L., Mat. Res. Soc. Symp. Proc. 82, 127 (1987).CrossRefGoogle Scholar
[11] Morehead, F. and Crowder, B. L. Rad. Eff. 6, 27 (1970).CrossRefGoogle Scholar
[12] Vook, F. L. “Radiation Damage and Defects in Semiconductors”, Institute of Physics, London (1972).Google Scholar
[13] Swanson, M. L., Parsons, J. R., Hoelke, C. W., Rad. Eff. 9, 249 (1971).CrossRefGoogle Scholar