Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T09:36:16.581Z Has data issue: false hasContentIssue false

Ion Beam Processing for Silicon - Based Light Emission

Published online by Cambridge University Press:  01 February 2011

W. Skorupa*
Affiliation:
Forschungszentrum Rossendorf, Institute of Ion Beam Physics and Materials Research, POB 510119, D-01314 Dresden, Germany nanoparc GmbH, Dresden - Rossendorf, Germany
T. Dekorsy*
Affiliation:
Forschungszentrum Rossendorf, Institute of Ion Beam Physics and Materials Research, POB 510119, D-01314 Dresden, Germany
T. Gebel*
Affiliation:
nanoparc GmbH, Dresden - Rossendorf, Germany
M. Helm*
Affiliation:
Forschungszentrum Rossendorf, Institute of Ion Beam Physics and Materials Research, POB 510119, D-01314 Dresden, Germany nanoparc GmbH, Dresden - Rossendorf, Germany
V.S. Lysenko*
Affiliation:
Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
A.N. Nazarov*
Affiliation:
Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
I.N. Osiyuk*
Affiliation:
Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
L. Rebohle*
Affiliation:
nanoparc GmbH, Dresden - Rossendorf, Germany
B. Schmidt*
Affiliation:
Forschungszentrum Rossendorf, Institute of Ion Beam Physics and Materials Research, POB 510119, D-01314 Dresden, Germany
J. M. Sun*
Affiliation:
Forschungszentrum Rossendorf, Institute of Ion Beam Physics and Materials Research, POB 510119, D-01314 Dresden, Germany
Get access

Abstract

The development of novel devices for optical communication and integrated sensor applications is mainly focused on their possible integration into dedicated integrated circuits. The main problem concerning integrated optical systems in silicon technology has always been the realization of a highly efficient silicon-based light emitter which is a key requirement to make a real step into the world of integrated optoelectronics.

One of the most promising approaches to form such a silicon based light emitter is ion beam processing. In this paper we will report on recent results regarding blue-violet (∼400 nm) and infrared (∼1100 nm) electroluminescence (EL) from ion beam synthesized Ge-rich silicon dioxide layer and Boron-implanted pn-junctions in silicon showing remarkable power efficiencies of 0.5 and 0.12%, respectively. The main effort is devoted to the achievement of a deeper insight into the mechanism of the EL.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[2] Pavesi, L., Gaponenko, S., and Dal Negro, L.,(eds) “Towards the First Silicon Laser” Proc. NATO Adv. Research Workshop, Trento Sept. 21–26, 2002, (Kluwer Acad. Publ. 2003).Google Scholar
[3] Rebohle, L., von Borany, J., Yankov, R.A., Skorupa, W., Tyschenko, I.E., Fröb, H., and Leo, K., Appl. Phys. Lett. 71, 2809 (1997).Google Scholar
[4] Rebohle, L., von Borany, J., Fröb, H., Gebel, T., Helm, M., and Skorupa, W., Nucl. Instr. Meth. B 188, 28 (2002).Google Scholar
[5] Skorupa, W., Rebohle, L., Gebel, T., and Helm, M., in [2], p. 69, and Appl. Phys. A76, 1049 (2003).Google Scholar
[6] Rebohle, L., von Borany, J., Borchert, D., Fröb, H., Gebel, T., Helm, M., Möller, W., and Skorupa, W.: J. Electrochem. Soc.: Electrochem. and Solid State Lett. 7, G57 (2001).Google Scholar
[7] Gebel, T., Rebohle, L., Skorupa, W., Nazarov, A.N., Osiyuk, I. N., and Lysenko, V. S., Appl. Phys. Lett. 81, 1575 (2002).Google Scholar
[8] Nazarov, A.N., Gebel, T., Rebohle, L., Skorupa, W., Osiyuk, I.N., and Lysenko, V.S., J. Appl. Phys. 94, 4440 (2003).Google Scholar
[9] Gebel, T., Dissertation, Technische Universität Dresden, Germany, (2002)Google Scholar
[10] Pavesi, L., J. Phys.: Condens. Matter 15, R1169 (2003).Google Scholar
[11] Green, M. A., Zhao, J., Wang, A., Reece, P. J., and Gal, M., Nature 412, 805 (2001).Google Scholar
[12] Wal Lek, Ng, Lourenço, M. A., Gwilliam, R. M., Ledain, S., Shao, G., and Homewood, K. P., Nature 410, 192 (2001).Google Scholar
[13] Emel'yanov, A. M., Sobolev, N. A., Mel'nikova, T. M., and Pizzini, S., Semiconductors 37, 730 (2003).Google Scholar
[14] Sun, J.M., Dekorsy, T., Skorupa, W., Schmidt, B., and Helm, M., Appl. Phys. Lett. 83, 3885 (2003).Google Scholar
[15] Sun, J.M., Dekorsy, T., Skorupa, W., Schmidt, B., and Helm, M., Appl. Phys. Lett. 82, 2823 (2003).Google Scholar
[16] Weman, H., Monemar, B., Oehrlein, G. S., and Jeng, S. J., Phys. Rev. B 42, 3109 (1990).Google Scholar
[17] Sun, J. M., Dekorsy, T., Skorupa, W., Schmidt, B., Mücklich, A., and Helm, M., unpublishedGoogle Scholar
[18] Solmi, S., Baruffaldi, F., and Canteri, R., J. Appl. Phys. 69, 2135 (1991).Google Scholar
[19] Solmi, S., Landi, E., and Baruffaldi, F., J. Appl. Phys. 68, 3250 (1990).Google Scholar
[20] Dekorsy, T., Sun, J.M., Skorupa, W., Schmidt, B., and Helm, M., Appl. Phys. A, to be published.Google Scholar
[21] Pelaz, L., Gilmer, G. H., Gossmann, H.-J., Poate, J.M., Rafferty, C. S., Jaraiz, M., and Barbolla, J., Appl. Phys. Lett. 74, 3657 (1999).Google Scholar
[22] Pelaz, L., Venezia, V.C., Gossmann, H.-J., Gilmer, G.H., Fiory, A.T., Rafferty, C.S., Jaraiz, M., and Barbolla, J., Appl. Phys. Lett. 75, 662 (1999).Google Scholar
[23] Castagna, M.E., Coffa, S., Monaco, M., Muscara', A., Caristia, L., Lorenti, S., and Messina, A., Mat. Res. Soc. Symp. Proc. 770, I2.1.1(2003).Google Scholar