Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T19:05:26.245Z Has data issue: false hasContentIssue false

Investigation of the Transport Mechanism in Doped La-Based Manganite Thin Films by Traveling Wave Method

Published online by Cambridge University Press:  10 February 2011

L. Wang
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China
S. Huang
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China
J. Yin
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China
X. Huang
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China
J. Xu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China
Z. Liu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China
K. Chen
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China
Get access

Abstract

The traveling wave (TW) method has been utilized to investigate the transport mechanism in paramagnetic-insulator state of La0.75Sr0.11Ca0.14MnO3 films. The drift mobility of the films increased from 2.5 × 10−2 cm2/Vs at 310 K to about 9.2 × 10−2 cm2/Vs at 400 K. The Arrhenius behaviors of the conductivity and drift mobility indicate that the transport process in manganites above the Curie temperature is dominated by the thermally assisted hopping of small polarons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jonker, J. H. and Santen, J. H. Van, Physica (Amsterdam) 16, p. 599 (1950).Google Scholar
2. Jin, S., McCormack, M., Fastnach, R. A., Ranesh, R. and Chen, L. H., Science 264, p. 413 (1994).Google Scholar
3. Helmholt, R. Von, Wecker, J., Holzaptel, B., Schultz, L. and Samwer, K., Phys. Rev. Lett. 71, p. 2331 (1993).Google Scholar
4. Majumdar, P. and Littlewood, P. B., Nature (London) 395, p. 479 (1998)Google Scholar
5. Mathews, S., Ramesh, R., Venkantesan, T., Benedetto, J., Science 276, p. 238(1997)Google Scholar
6. , Zener, Phys. Rev. 82, p. 403 (1951).Google Scholar
7. Millis, J., Littlewood, P. B. and Shraiman, B. I., Phys. Rev. Lett. 74, p. 5144 (1995).Google Scholar
8. Röder, H., Zhang, J. and Bishop, A. R., Phys. Rev. Lett. 76, p. 1356 (1996).Google Scholar
9. Kaplan, S. G. et al. , Phys. Rev. Lett. 77, p. 2081 (1996).Google Scholar
10. Teresa, J. M. De et al. , Nature (London) 386, p. 256 (1997)Google Scholar
11. Jaime, M., Salamon, M.B., Rubinstein, M., Treece, R. E., Horwitz, J. S. and Chrisey, D. B., Phys. Rev. B 54, p. 11914 (1996)Google Scholar
12. Jaime, M., Hardrer, H. T., Salamon, M. B., Rubinstein, M., Dorsey, P. and Emin, D., Phys. Rev. Lett. 78, p. 951 (1997).Google Scholar
13. Palstra, T. T. M., Ramirez, A.P., Cheong, S-W., Zegarski, B. R., Schifer, P. and Zannen, J., Phys. Rev. B 56, p. 5104 (1997).Google Scholar
14. Matl, P., Ong, N. P., Yan, Y F., Li, Y. Q., Studebaker, D., Baum, J. and Doubinina, G., Phys. Rev. B 57, p. 10248 (1998).Google Scholar
15. Snyder, G. J., Beasley, M. R. and Geballe, T. H., Appl. Phys. Lett. 69, p. 4254 (1996).Google Scholar
16. Adler, R., James, D., Hunsinger, B. J. and Datta, S., Appl. Phys. Lett. 38, p. 102 (1981).Google Scholar
17. Fritzsche, H. and Chen, K. J., Phys. Rev. B 28, p. 4900 (1983).Google Scholar
18. Chen, K. J. and Fritzsche, H., J. Non-cryst. Solid, 59&60, p. 441 (1983).Google Scholar
19. Jahanson, Robert E., Phys. Rev. B 45, p. 4089 (1992).Google Scholar
20. Yin, J., Gao, X. S., Liu, Z. G., Zhang, Y. X., Liu, X. Y., Appl. Surf. Sci. 141, p. 21 (1999)Google Scholar
21. Auld, A., Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol.2 Google Scholar
22. Alexandrov, A. S. and Bratkovsky, A. M., Phys. Rev. Lett. 82, p. 141 (1999)Google Scholar
23. Emin, D., Ann. Phys. (N. Y) 53, p. 439(1969)Google Scholar