Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T21:46:11.242Z Has data issue: false hasContentIssue false

Investigation of Photon Redistribution in High Temperature Photonic Crystal Structures

Published online by Cambridge University Press:  31 January 2011

Weijun Zhao
Affiliation:
biswasr@iowastate.edu, United States
Rana Biswas
Affiliation:
biswasr@iowastate.edu, United States
Irina Puscasu
Affiliation:
irina.puscasu@icxt.com, ICX Photonics, Billerica, Massachusetts, United States
Anton Greenwald
Affiliation:
anton.greenwald@icxt.com, ICX Photonics, Billerica, Massachusetts, United States
Edward Johnson
Affiliation:
ed.johnson@icxt.com, United States
Get access

Abstract

We have simulated the angle-dependent absorption and thermal emittance of two dimensional metallic and metallodielectric photonic crystals (PCs) with rigorous scattering matrix methods- where Maxwell's equations are solved in Fourier space. These metallic photonic crystals exhibit strong thermal emittance and absorption peaks in the normal direction. This peak splits into multiple peaks at larger and shorter wavelengths away from the normal direction. The thermal emission at different wavelengths is redistributed into different emission angles. There is partial suppression of photon emission at long wavelengths and enhancement at the shorter wavelength spectral range where the thermal emittance has a maximum. Angle-dependent measurements of the emission in metallo-dielectric photonic crystals are performed. Simulations compare well with these measurements and are consistent with the surface plasmon model. The strong dependence of the absorption with angle is very important for thermo-photovoltaic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lin, S.Y. Fleming, J.G. and El-Kady, I., Opt. Lett. 28, 1909 (2003).Google Scholar
[2] Puscasu, I. Pralle, M. McNeal, M. Daly, J. Greenwald, A. Johnson, E. Biswas, R. and Ding, C. G., J. Appl. Phys. 98, 13531 (2005).Google Scholar
[3] El-Kady, I., Chow, W. W. Fleming, J. Phys. Rev. B 72, 195110 (2005).Google Scholar
[4] Biswas, R. Ding, C.G. Puscasu, I. Pralle, M. McNeal, M. Daly, J. Greenwald, A. and Johnson, E., Phys. Rev. B. 74, 045107 (2006).Google Scholar
[5] Lin, S. Y. Moreno, J. and Fleming, J. G. Appl. Phys. Lett. 83, 380 (2003).Google Scholar
[6] Sai, H. Yugami, H. Appl. Phys. Lett. 85, 3399 (2004).Google Scholar
[7] Jovanoviæ, N., Éelanoviæ, I., and Kassakian, J. AIP Conf. Proc. 890, 47 (2007).Google Scholar
[8] Florescu, M. Lee, H. Puscasu, I. Pralle, M. Florescu, L. Ting, D. Z. Dowling, J. P. Solar Energy Materials and Solar Cells 91, 1599 (2007).Google Scholar
[9] Fleming, J. Lin, S. El-Kady, I., Biswas, R. and Ho, K. M. Nature 417, 52 (2002).Google Scholar
[10] Biswas, R. Zhou, D. Puscasu, I. Johnson, E. Taylor, A. and Zhao, W. Appl. Phys Lett. 93, 063307 (2008).Google Scholar
[11] Lee, J.H. Kim, C.H. Kim, Y-S. Ho, K.M. Constant, K. and Oh, C.H. Appl. Phys. Lett. 88, 181112 (2006).Google Scholar
[12] Li, Z. Y. and Lin, L. L. Phys. Rev. E 67, 046607 (2003).Google Scholar
[13] Biswas, R. Neginhal, S. Ding, C. G. Puscasu, I. Johnson, E. J. Opt. Soc. of America B 24, 2489 (2007).Google Scholar
[14] Siegel, R. and Howell, J. R. Thermal Radiation Heat Transfer – 4th ed., Taylor & Francis, 2002.Google Scholar
[15] Luo, C. Narayanaswamy, A. Chen, G. and Joannopoulos, J. D. Phys. Rev. Lett. 93, 213905 (2004).Google Scholar
[16] Raether, H. Surface Plasmons, Springer Tracts in Modern Physics, vol. 111, Springer-Verlag, Berlin, 1988.Google Scholar
[17] El-Kady, I., Biswas, R. Ye, Y. Su, M. F. Puscasu, I. Pralle, M. Johnson, E.A. Daly, J. and Greenwald, A., Photonics and Nanostructures – Fundamentals and Applications 1, 69 (2003).Google Scholar