Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-11T07:37:58.878Z Has data issue: false hasContentIssue false

Investigation of Optical Properties of Nitrogen Incorporated Sb based Quantum Well and Quantum Dots for Infrared Sensors Application

Published online by Cambridge University Press:  01 February 2011

Seongsin M Kim
Affiliation:
seongsin@snow.stanford.edu, Stanford University, EE, 420 Via palou, CISX 310, stanford, CA, 94305, United States
Homan B Yuen
Affiliation:
hyuen@snow.stanford.edu, Stanford University, stanford, CA, 94305, United States
Fariba Hatami
Affiliation:
hatami@physik.hu-berlin.de, Humboldt-University at Berlin, Berlin, N/A, Germany
Akihiro Moto
Affiliation:
amoto@sumitomo.com, Innovation Core SEI, Inc, Santa Clara, CA, Santa Clara, CA, 95051, United States
Alan Chin
Affiliation:
achin@mail.arc.nasa.gov, NASA Ames Research Center,, Moffett Field, CA, 94035, United States
James S Harris
Affiliation:
harris@snow.stanford.edu, Stanford University, stanford, CA, 94305, United States
Get access

Abstract

We report the growth and characterization of a new dilute nitride, InNAsSb/InAs, by solid source molecular beam epitaxy. Optimizing growth conditions for nitrogen incorporation has resulted in high-quality InNAsSb epilayers without any structural degradation, as confirmed by high-resolution x-ray diffraction. Optical properties were investigated by temperature dependent and excitation power dependent photoluminescence. We obtained mid-infrared luminescence around 4 mm at low temperature, which reveals strong carrier localization behavior at low temperature induced by nitrogen interacted with antimony. The band alignment of InNAsSb/InAs can be type-I and instead of conventional type-II, InAsSb/InAs, and a conduction band offset, Ec,of ∼102meV was obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Weyers, M., Sato, M., and Ando, H., Jpn. J. Appl. Phys., Part 2 3, L853, (1992).Google Scholar
[2] Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., and Yazawa, Y., Jpn. J. Appl. Phys., Part 1, 35, 1273 (1996).Google Scholar
[3] Lindsay, A. and O'Reilly, E. P., Solid State Communications, 112, 443 (1999).Google Scholar
[4] Shan, W., Walukiewicz, W., Ager, J. W., Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett., 82, 1221 (1999).Google Scholar
[5] Dilute Nitride Semiconductors, Ed. Mohammed Henini, Amsterdam: Elsevier, pp. 192, January 2005, and references within.Google Scholar
[6] Ashley, T., Burke, T.M., Pryce, G.J., Adams, A.R., Andreev, A., Murdin, B.N., O'Reilly, E.P., and Pidgeon, C.R., Solid State Electron., 47, 387 (2003).Google Scholar
[7] Mahboob, I., Veal, T.D., McConville, C.F., J. Appl. Phys., 96, 4935 (2004).Google Scholar
[8] I. A. Buyanova,Chen, W. M., Pozina, G., Bergman, J. P., Monemar, B., Xin, H. P. and Tu, C. W., Appl. Phys. Lett., 75, 501 (1999).Google Scholar
[9] Grenouillet, L., Bru-Chevallier, C., Guillot, G., Gilet, P., Duvaut, P., Vannuffel, C., Million, A., and Chenevas-Paule, A., Appl. Phys. Lett., 76, 2241 (2000).Google Scholar
[10] Yuen, H.B., Kim, S.M., Hatami, F., and Harris, J.S., Appl. Phys. Lett. 89, 121921 (2006)Google Scholar
[11] Zinke-Allmang, M., Feldman, L.C., and Grabow, M.H., Surf. Sci. Rep. 16, 377 (1992).Google Scholar