Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-18T23:47:59.716Z Has data issue: false hasContentIssue false

Investigation of Local Structures Around Luminescent Centers in Doped Nanocrystal Phosphors

Published online by Cambridge University Press:  15 February 2011

Y. L. Soo
Affiliation:
Department of Physics, State University of New York at Buffalo, Buffalo, New York 14261
S. W. Huang
Affiliation:
Department of Physics, State University of New York at Buffalo, Buffalo, New York 14261
Z. H. Ming
Affiliation:
Department of Physics, State University of New York at Buffalo, Buffalo, New York 14261
Y. H. Kao
Affiliation:
Department of Physics, State University of New York at Buffalo, Buffalo, New York 14261
E. Goldburt
Affiliation:
Nanocrystals Technology, P.O. Box 820, Briarcliff Manor, New York 10510.
R. Hodel
Affiliation:
Nanocrystals Technology, P.O. Box 820, Briarcliff Manor, New York 10510.
B. Kulkarni
Affiliation:
Nanocrystals Technology, P.O. Box 820, Briarcliff Manor, New York 10510.
R. Bhargava
Affiliation:
Nanocrystals Technology, P.O. Box 820, Briarcliff Manor, New York 10510.
Get access

Abstract

Extended x-ray absorption fine structure (EXAFS) technique has been employed to investigate the local structures around luminescent centers in nanocrystals of Mn-doped ZnS and Tb-doped Y2O3. Size-dependent local structural changes around Mn luminescent centers have been found in Mn-doped nanocrystals of ZnS by using Mn K-edge EXAFS. Local structures around Tb investigated by Tb Li-edge EXAFS also show substantial differences between bulk and nanocrystal samples. This structural information is useful for understanding the novel optical properties of doped nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bhargava, R. N., Gallagher, D., Hong, X. and Nurmikko, A., Phys. Rev. Lett. 72, 416 (1994)Google Scholar
2. Soo, Y. L., Ming, Z. H., Huang, S. W., Kao, Y. H., Bhargava, R. N., and Gallagher, D., Phys. Rev. B 50, 7602 (1994)Google Scholar
3. Goldburt, E., Hodel, R., Kulkarni, B., and Bhargava, R. N., 1995 (unpublished)Google Scholar
4. Newville, M., Livinš, P., Yacoby, Y., Rehr, J. J. and Stem, E. A., Phys. Rev. B47, 14126 (1993)Google Scholar
5. Henke, B. L., Lee, P., Tanaka, T. J., Shimabukuro, R. L., and Fujikawa, B. K., At. Data Nucl. Data Tables 27, 3 (1982)Google Scholar
6. McMaster, W. H., Grande, N. Kerr Del, Mallett, J. H. and Hubbell, J. H., Compilation of X-ray Cross Sections, National Technical Information Services, Springfield, 1969 Google Scholar
7. Lee, P. A., Citrin, P. H., Eisenberger, P., and Kincaid, B. M., Rev. Mod. Phys. 53,760 (1981)Google Scholar
8. Sayers, D. E., Bunker, B. A., in X-ray Absorption, edited by Koningsberger, D. C. and Prins, R. (Wiley, New York, 1988), p.211 Google Scholar
9. Rehr, J. J., Mustre de Leon, J., Zabinsky, S. I. and Albers, R. C., J. Am. Chem. Soc. 113, 5 135 (1991)Google Scholar
10. Wyckoff, Ralph W. G., Crystal Structures (Interscience Publisher Inc. New York, 1960)Google Scholar