Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T01:02:40.596Z Has data issue: false hasContentIssue false

Investigation of Lithiated Carbons by Transmission Electron Microscopy and X-Ray Diffraction Analysis

Published online by Cambridge University Press:  10 February 2011

T. D. Tran
Affiliation:
Department of Chemistry and Materials Science, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
X. Y. Song
Affiliation:
Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
K. Kinoshita
Affiliation:
Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Get access

Abstract

The microstructures of lithiated synthetic graphite and carbon black were studied by high- resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analysis. Information about the crystal structure of carbon containing various Li compositions can provide useful insights to our understanding of the Li storage mechanism in carbonaceous materials. Samples with compositions of Li0.93C6or Li0.45C6 were found to contain both stage-one and stage-two compounds. These observations are consistent with XRD data. The changes in sample microstructure as the results of lithiation and exposure to electron irradiation were observed by TEM and recorded over several minutes in the microscope environment. Selected area electron diffraction patterns indicated that the lithiated samples quickly changed composition to LiC 24, which appeared to dominate during the brief analysis period. The layer planes in the lattice image of a disordered carbon black after Li insertion are poorly defined, and changes in the microstructure of these lithiated carbons was not readily apparent. Observations on these lithium intercalation compounds as well as the limitation of the experimental procedure will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zheng, T., Liu, Y., Fuller, E., Tseng, S., Sacken, U. von and Dahn, J., J. Electrochem. Soc., 142, 2581 (1995).Google Scholar
2. Mabuchi, A., Fujimoto, H., Tokumitsu, K. and Kasuh, T., T., , J. Electrochem. Soc., 142, 3049 (1995).Google Scholar
3. Matsumura, Y., Wang, S. and Mondori, J., Carbon, 33, 1457 (1995).Google Scholar
4. Mori, Y., Iriyama, T., Hashimoto, T., Yamazaki, S., Kawakami, F. and Shiroki, H., J. Power Sources, 56, 205 (1995).Google Scholar
5. Sato, K., Noguchi, M., Demachi, A., Oki, N. and Endo, M., Science, 264, 556 (1994).Google Scholar
6. Millward, G. and Jefferson, D., in Chemistry and Physics of Carbon, Vol. 14, Edited by Walker, P. and Thrower, P., Marcel Dekker, New York, p. 1 (1978).Google Scholar
7. Evans, E. and Thomas, J., J. Solid State Chem., 14, 99 (1975).Google Scholar
8. Thomas, J., Millward, G., Davies, N. and Evans, E., J. Chem. Soc. (Dalton), 23, 2443 (1976).Google Scholar
9. Thomas, J., Millward, G., Schlogl, R. and Boehm, H., Mat. Res. Bull., 15, 671 (1980).Google Scholar
10. Kambe, N., Mazurek, H., Dresselhaus, M.S. and Dresselhaus, G., Physica, 105B, 272 (1981).Google Scholar
11. Dresselhaus, M., Kambe, N., Berker, A. and Dresselhaus, G., Syn. Met., 2, 121 (1980).Google Scholar
12. Salamanca-Riba, L., Yeh, N., Dresselhaus, M., Endo, M. and Enoki, T., J. Mat. Res., 1, 177 (1986).Google Scholar
13. Kambe, N., Dresselhaus, M.S., Dresselhaus, G., Basu, S., McGhie, A.R. and Fischer, J.E., Mat. Sci. and Eng., 40, 1 (1979).Google Scholar
14. Song, X., Kinoshita, K. and Tran, T., J. Electrochem. Soc., 143, L120 (1996).Google Scholar
15. Kinoshita, K., Bonevich, J., Song, X. and Tran, T., Solid State Ionics, 86–88, 1343 (1996).Google Scholar
16. Tran, T., Feikert, J., Song, X. and Kinoshita, K., J. Electrochem. Soc., 142, 3297 (1995).Google Scholar
17. Kinno, T., Watanabe, M. and Mizushima, K., Phys. Rev. B., 52, 669 (1995).Google Scholar
18. Roh, Y., Kawai, T., Araki, H., Yoshino, K., Takase, M. and Suzuki, T., Jpn. J. Appl. Phys., 34, L61 (1995).Google Scholar
19. Lang, H., Wiesendanger, R., Thommen-Geiser, V. and Guntherodt, H., Phys. Rev. B., 45, 1829 (1992).Google Scholar
20. Mittleman, R., Phys. Rev. B., 36, 6001 (1987).Google Scholar
21. Satoh, A., Takami, N. and Ohsaki, T., Solid State Ionics, 80, 291 (1995).Google Scholar
22. Uchida, I. and Tomura, K., Chem. Ind., 43, 972 (1992).Google Scholar
23. Naji, A., Ghanbaja, J., Humbert, B., Willmann, P. and Billaud, D., J. Power Sources, 63, 33 (1996).Google Scholar
24. Wetzig, K., Fresenius J. Anal. Chem., 349, 64 (1994).Google Scholar
25. Kambe, N., Dresselhaus, G. and Dresselhaus, M., Phys. Rev. B, 21, 3491 (1980).Google Scholar
26. Pedraza, D. and Koike, J., Carbon, 32, 54 (1994).Google Scholar
27. Nakai, K., Kinoshita, C. and Matsunaga, A., Ultramicroscopy, 39, 361 (1991).Google Scholar
28. Hull, R., Petford, A., Humphreys, C. and Smith, D., Solid State Ionics, 9 & 10, 181 (1983).Google Scholar
29. Tanaike, O. and Inagaki, M., Carbon, 35, 831 (1997).Google Scholar