Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-16T06:29:18.760Z Has data issue: false hasContentIssue false

Investigation of Carbon Incorporation into GaAs by TEGa-AsH3 Based Low Pressure Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  22 February 2011

M. S. Feng
Affiliation:
Institute of Materials Science and Engineering;Hsinchu, Taiwan, R. O. China
H. D. Chen
Affiliation:
Institute of Electronics, National Chiao Tung UniversityHsinchu, Taiwan, R. O. China
C. H. Wu
Affiliation:
Deparment of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, R. O. China
Get access

Abstract

Heavily Carbon doped GaAs(l×1018−1×1020cm−3 ) grown by low pressure metalorganic chemical vapor deposition(LPMOCVD) using triethylgallium(TEGa), arsine(AsH3) as sources and liquid carbon-tetrachoride(CCI4) as dopant has been investigated. The carrier concentration was verified at various growth temperatures, V/III ratios and CCI4 flow rates. Dopant concentration first increased from 550°C and reached a maxium at 570°C and then decreased monotonously. Carbon incorporation was strongly enhanced when V/III ratio was less than 30 at Tg=590°C or less than 40 at Tg=630°C. Hole concentration increased and then decreased as CCI4 increased. The doping efficiency of epitaxtial layers grown on(100) substrate was higher than that on 2° off toward <110> misoriented substrate. Carbon doped GaAs films had higher Hall mobility than zinc doped GaAs films at high doping level due to less self-compensation. The highest dopant concentration in this system was 2.3×1020cm−3 at Tg=580°C and V/III=10.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wang, G. W., Pierson, R. L., Asbeck, P. M., Wang, K. C., Wang, N. L., Nubling, R., Chang, M. F., Salerno, J. aud Sastry, S., IEEE Electron Device Lett., 12, 347(1991).Google Scholar
[2] deLyon, T. J., Woodall, J. M., Mclnturff, D. T., Bates, R. J. S., Kash, J. A., Krichner, P. D., and Cardone, F., Appl. Phys. Lett., 60, 353(1992).Google Scholar
[3] Roberts, J. S., Singh, K. C., Button, C. C., Davidand, J. P. R. and Woodhead, J., J. Cryst. Growth, 107, 915(1991).Google Scholar
[4] Amarger, V., Dubon-Chevallier, C., Gao, Y., and Descouts, B., J. Appl. Phys., 71, 5694(1992).Google Scholar
[5] Abernathy, C. R., Pearton, S. J., Caruso, R., Ren, F., and Kovalchik, J., Appl. Phys. Lett., 55, 1750(1989).Google Scholar
[6] Konagai, M., Yamada, T., Akatsuka, T., Satito, K., Tokumitsu, E. and Akahashi, K. T., J. Cryst. Growth, 98, 167(1989).Google Scholar
[7] Hoke, W. E., Lemonias, P. J., Weir, D. G., Hendriks, H. T., and Jackson, G. S., J. Appl. Phys., 69, 511(1991).Google Scholar
[7] Cunningham, B. T., Haase, M. A., McCollum, M. J., Baker, J.E., and Stillman, G.E. Appl. Phys. Lett., 54, 1905(1989).Google Scholar
[8] Enquist, P. M., Appl. Phys. Lett., 57, 2348(1990).Google Scholar
[9] Hlanna, M.C., Lu, Z. H., and Majerfeld, A., Appl. Phys.Lett, 58, 164(1991).Google Scholar
[10] Chang, C.Y., Su, Y.K., Lee, M. K., Chen, L.G., and Houng, M.P., J. Cryst. Growth, 55, 24(1981).Google Scholar
[11] Kueth, T.F. and Potemski, R., Appl. Phys. Lett., 47, 821(1985).Google Scholar
[12] Chiu, T. E., Cunningham, J. E., Ditzenberger, J. A., and Jan, W. Y.., Appl. Phys. Lett., 57, 171(1990).Google Scholar
[13] Chen, L.P., Chang, C.Y., and Wu, C.H., J.Appl.Phys., 61, 442(1987).Google Scholar