Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T04:23:41.536Z Has data issue: false hasContentIssue false

Investigation of Band-Gap States in AlGaN/GaN Hetero-Structures with Different Growth Conditions of GaN Buffer Layers

Published online by Cambridge University Press:  10 January 2012

Yoshitaka Nakano
Affiliation:
Chubu University, Kasugai, Aichi 487-8501, Japan
Yoshihiro Irokawa
Affiliation:
National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Yasunobu Sumida
Affiliation:
POWDEC, Oyama, Tochigi 323-0028, Japan
Shuichi Yagi
Affiliation:
POWDEC, Oyama, Tochigi 323-0028, Japan
Hiroji Kawai
Affiliation:
POWDEC, Oyama, Tochigi 323-0028, Japan
Get access

Abstract

We have investigated electronic band-gap states in AlGaN/GaN hetero-structures with different growth conditions of GaN buffer layers from a viewpoint of Carbon impurity incorporation into GaN, using photoluminescence (PL), capacitance-voltage (C-V) and steady-state photo-capacitance spectroscopy (SSPC) techniques. The Carbon incorporation was found to be enhanced with decreasing the growth temperature of the GaN buffer layer between 1120 and 1170 °C. Acting in concert, three specific deep levels located at ~2.07, ~2.70, and ~3.23 eV below the conduction band were found to become dense significantly at the low growth temperature. Therefore, these levels are probably attributable to Ga vacancies and/or Carbon acceptors produced by the Carbon impurity incorporation, and are likely in conjunction with each other.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bradley, S. T., Young, A. P., Brillson, L. J., Murthy, M. J., Schaff, W. J., and Eastman, L. F., IEEE Trans. Electron Devices 48, 412 (2001).Google Scholar
2. Luo, B., Johnson, J. W., Kim, J., Mehandru, R. M., Ren, F., Gila, B. P., Onstine, A. H., Abernathy, C. R., Pearton, S. J., Baca, A. G., Briggs, R. D., Shul, R. J., Monier, C., and Han, J., Appl. Phys. Lett. 80, 1661 (2002).Google Scholar
3. Green, D. S., Brown, J. D., Vetury, R., Lee, S., Gibb, S. R., Krishnamurthy, K., Poulton, M. J., Martin, J., and Shealy, J. B., Proc. SPIE 6894, 68941M (2008).Google Scholar
4. Nakano, Y., Irokawa, Y., Sumida, Y., Yagi, S., and Kawai, H., Physica Status Solidi RRL 4, 374 (2010).Google Scholar
5. Niebuhr, R., Bachem, K., Bombrowski, K., Maier, M., Plerschen, W., and Kaufmann, U., J. Electron. Mater. 24, 1531 (1995).Google Scholar
6. Lee, S. M., Belkhir, M. A., Zhu, X. Y., Lee, Y. H., Hwang, Y. G., and Frauenheim, T., Phys. Rev.B 61, 16033(2000).Google Scholar
7. Klein, P. B., Binari, S. C., Ikossi, K., Wickenden, A. E., Koleske, D. D., and Henry, R. L., Appl. Phys. Lett. 79, 3527 (2001).Google Scholar
8. Armstrong, A., Chakraborty, A., Speck, J. S., DenBaars, S. P., Mishra, U. K., and Ringel, S. A., Appl. Phys. Lett. 89, 262116 (2006).Google Scholar
9. Nakano, Y., Irokawa, Y., and Takeguchi, M., Appl. Phys. Express 1, 091101 (2008).Google Scholar
10. Fang, Z.-Q., Claflin, B., Look, D. C., Green, D. S., and Vetury, R., J. Appl. Phys. 108, 063706 (2010).Google Scholar
11. Armstrong, A., Arehart, A. R., Moran, B., DenBaars, S. P., Mishra, U. K., Speck, J. S., and Ringel, S. A., Appl. Phys. Lett. 84, 374 (2004).Google Scholar