Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T11:31:30.648Z Has data issue: false hasContentIssue false

Introduction of Organic Moieties into Transition-Metal Oxide Matrices via Phosphonate Groups

Published online by Cambridge University Press:  10 February 2011

P.H. Mutin
Affiliation:
UMR 5637, Université de Montpellier 2, cc007, 34095 Montpellier Cedex 5
C. Delenne
Affiliation:
UMR 5637, Université de Montpellier 2, cc007, 34095 Montpellier Cedex 5
D. Medoukali
Affiliation:
UMR 5637, Université de Montpellier 2, cc007, 34095 Montpellier Cedex 5
R. Corriu
Affiliation:
UMR 5637, Université de Montpellier 2, cc007, 34095 Montpellier Cedex 5
A. Vioux
Affiliation:
UMR 5637, Université de Montpellier 2, cc007, 34095 Montpellier Cedex 5
Get access

Abstract

Transition metal oxide / phenylphosphonate hybrids with M/P ratios ranging from 1 to 5, (M= Ti, Zr) and metal phosphonates (M/P = 0.5) have been prepared by a sol-gel process involving in a first step the non-hydrolytic condensation between metal alkoxide and phosphonic acid leading to M-O-P bonds, followed by the hydrolysis-condensation of the remaining M-OR groups. The composition, texture and structure of the materials were investigated using EDX, TGA, XRD, IR and 31P NMR.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sanchez, C. and Ribot, F., New J. Chem. 18, 1007 (1994).Google Scholar
2 Judeinstein, P. and Sanchez, C., J. Mater. Chem. 6, 511525 (1996).Google Scholar
3 Wen, J. and Wilkes, G. L., Journal of Inorganic & Organometallic Polymers 5, 343375 (1995).10.1007/BF01193060Google Scholar
4 Bradley, D.C. and Prevedorou-Demas, C., Can. J. Chem. 41, 629 (1963).Google Scholar
5 Clearfield, A., Current Opinion in Solid State & Materials Science 1, 268278 (1996).10.1016/S1359-0286(96)80094-5Google Scholar
6 Deniaud, D., Schöllôrn, B., Mansuy, D., Rouxel, J., Battioni, P., and Bujoli, B., Chem. Mater. 7, 9951000 (1995).Google Scholar
7 Alberti, G., Casciola, M., Costantino, U., and Vivani, R., Advanced Materials 8, 291303 (1996).Google Scholar
8 Benhamza, H., Barboux, P., Bouhaouss, A., Josien, F.-A., and Livage, J., J. Mater. Chem. 1, 681684 (1991).Google Scholar
9 Livage, J., Barboux, P., Vandenborre, M.T., Schmutz, C., and Taulelle, F., J. Non Cryst. Solids 147&148, 1823 (1992).Google Scholar
10 Schmutz, C., Barboux, P., Ribot, F., Taulelle, F., Verdaguer, M., and Fernandez-Lorenzo, C., J. Non Cryst. Solids 170, 250262 (1994).Google Scholar
11 Sanchez, C., Livage, J., Henri, M., and Babonneau, F., J. Non Cryst. Solids 100, 65 (1988).Google Scholar
12 Bujoli, B., Palvadeau, P., and Queignec, M., Eur. J. Solid State Inorg. Chem. 29, 141159 (1992).Google Scholar
13 Jaimez, E., Bortun, A., Hix, G.B., Garcia, J.R., Rodriguez, J., and Slade, R.C.T., J. Chem. Soc., Dalton Trans., 2285 (1996).Google Scholar
14 Segawa, K., Sugiyama, A., and Kurusu, Y., Stud. Surf. Sci. Catal. 60, 7380 (1991).Google Scholar