Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T23:59:21.968Z Has data issue: false hasContentIssue false

Intrinsic and Thermal Stress in Gallium Nitride Epitaxial Films

Published online by Cambridge University Press:  10 February 2011

J. W. Ager III
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
T. Suski
Affiliation:
UNIPRESS, Polish Academy of Sciences, Warsaw 01–142 POLAND
S. Ruvimov
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
J. Krueger
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
G. Conti
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
E. R. Weber
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
M. D. Bremser
Affiliation:
MS&E Department, North Carolina State University, Raleigh, NC 27695
R. Davis
Affiliation:
MS&E Department, North Carolina State University, Raleigh, NC 27695
C. P. Kuo
Affiliation:
Hewlett Packard, Optoelectronics Division, San Jose, CA 95131
Get access

Abstract

Strain in GaN epitaxial layers at room temperature is measured with three complementary methods: Raman spectroscopy (via shifts of phonon frequencies), low temperature photoluminescence (via shifts of band-edge luminescence), and X-ray diffraction (via shifts in lattice spacings). GaN films grown on the c-plane of sapphire tend to be in compression. Increasing the Si-dopant concentration (up to 1019 cm−3) is observed to add compressive strain to the layer. Axially resolved measurements obtained by micro-Raman in 4 μm thick Si-doped films reveal strain relaxation toward the sample surface at Si concentrations above 1018 cm−3. Mg- and Si-doped GaN films on SiC substrates are found to be in tension. An experimental methodology is presented that separates two contributions to the room temperature residual stress in GaN epilayers: (1) the thermal stress due to differences in the thermal expansion coefficients of the epilayer and substrate and (2) the intrinsic stress, which is influenced by the growth conditions. We measure stress as a function of temperature up to 325 C, about one-third of the growth temperature, by monitoring the frequency of the E2 phonon mode by Raman spectroscopy. A high-quality bulk single crystal of GaN is used as a strain-free standard. Over this temperature range, most layers behave elastically; the observed stress trends are well-fit by a thermal expansion model using previous reported values of the thermal expansion coefficients of GaN and the substrates. The intrinsic stress states at the growth temperature for films grown on sapphire and SiC are predicted to be tensile and compressive, respectively, in agreement with the a-plane lattice coefficient mismatch.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morkoç, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar
2. Ruvimov, S., Liliental-Weber, Z., Suski, T., Ager, J. W. III, Washburn, J., Krueger, J., Kisielowski, C., Weber, E. R., Amano, H., and Akasaki, I., Appl. Phys. Lett. 69,990 (1996).Google Scholar
3. Suski, T., Ager, J. W. III, Conti, G., Liliental-Weber, Z., Krueger, J., Ruvimov, S., Kisielowski, C., Weber, E. R., Kuo, C.-P., Grzegory, I., and Porowski, S., Proceedings of the 23rd International Conference on the Physics of Semiconductors (World Scientific, Singapore, 1996).Google Scholar
4. Weeks, T. W. Jr., Bremser, M. D., Ailey, K. S., Carlson, K. S., and Davis, R. F., Appl. Phys. Lett. 67, 401 (1995).Google Scholar
5. Perlin, P., Gorczyca, I., Christensen, N. E., Grzegory, I., Teisseyre, H., and Suski, T., Phys. Rev. B 45,13307 (1992).Google Scholar
6. Perlin, P., Jauberthie-Carillon, C., Itie, J. P., San Miguel, A., Grzegory, I., Polian, A., Phys. Rev. B 45, 83 (1992).Google Scholar
7. Wetzel, C., Walukiewicz, W., Haller, E. E., Ager, J. W. III, Grzegory, I., Porowski, S., and Suski, T., Phys. Rev. B, 53, 1322 (1996).Google Scholar
8. Polian, A., Grimsditch, M., and Grzegory, I., J. Appl. Phys. 79, 3343 (1996).Google Scholar
9. Kisielowski, C., Krueger, J., Ruvimov, S., Suski, T., Ager, J. W. III, Jones, E., Liliental-Weber, Z., Rubin, M., Weber, E. R., Bremser, M. D., and Davis, R. F., Phys. Rev. B, in press.Google Scholar
10. Kozawa, T., Kachi, T., Kano, H., Nagase, H., Koide, N., and Manabe, K., J. Appl. Phys. 77, 4389 (1995).Google Scholar
11. Demangeot, F., Frandon, J., Renucci, M. A., Briot, O., Gil, B., and Aulombard, R. L., Solid State Commun. 100, 207 (1996).Google Scholar
12. Rieger, W., Metzger, T., Angerer, H., Dimitrov, R., Ambacher, O., and Stutzmann, M., Appl. Phys. Lett. 68,970 (1996).Google Scholar
13. Krueger, J., Kisielowski, C., Suski, T., Ruvimov, S., Liliental-Weber, Z., Ager, J. W. III, Rubin, M., and Weber, E. R., Proceedings of the JEEE-SIMC, Toulouse, France, in press.Google Scholar
14. Menendez, J. and Cardona, M., Phys. Rev. B 29, 2051 (1984).Google Scholar
15. Thermophvsical Properties of High Temperature Solid Materials, ed. Touloukian, Y. S. (Macmillan, New York, 1967). Vol. 4, pp. 2225 and Vol. 5, pp. 129–130.Google Scholar