Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-20T11:19:54.596Z Has data issue: false hasContentIssue false

Intra-Cascade Surface Recombination of Point Defects During Ion Bombardment of Ge (001)

Published online by Cambridge University Press:  22 February 2011

J. A. Floro
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185.
B. K. Kellerman
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185.
E. Chason
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185.
S. T. Picraux
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185.
D. K. Brice
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185.
K. M. Horn
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185.
Get access

Abstract

Low energy Ar and Xe ion bombardment of Ge (001) produces large numbers of point defects on the Ge surface and in the near-surface regions. Defect concentrations on the surface are detected and quantified in real time during bombardment using in situ Reflection High Energy Electron Diffraction (RHEED). We report the energy dependence of the defect yield for 70–500 eV Ar and Xe ion bombardment, and the temperature dependence of the defect yield (defects/ion) during 200 eV ion bombardment. The defect yield drops rapidly as the substrate temperature during bombardment is varied from 175 K to 400 K. We attribute the yield reduction to surface recombination of adatoms and vacancies produced in the same collision cascade.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Greene, J. E., CRC Critical Reviews in Solid State and Materials Science 2, 47 (1983).Google Scholar
2 Choi, C-H., Ai, R., and Barnett, S. A., Phys. Rev. Lett. 67, 2826 (1991).Google Scholar
3 Atwater, H. A., Tsai, C. J., Nikzad, S., and Murty, M. V. R., in Interface Dynamics and Growth, Liang, K. S., Anderson, M. P., Bruinsma, R. F., and Scoles, G., eds. (Mater. Res. Soc. Symp. Proc. 237, Pittsburgh, PA, 1992).Google Scholar
4 Floro, J. A., Kellerman, B. K., Chason, E., Picraux, S. T., Brice, D. K., and Horn, K. M., J. Appl. Phys. (submitted).Google Scholar
5 Kubby, J. A., Griffith, J. E., Becker, R. S., and Vickers, J. S., Phys. Rev. B 36, 6079 (1987).Google Scholar
6 Chason, E., Tsao, J. Y., Horn, K. M., and Picraux, S. T., J. Vac. Sci. Technol. B 7, 332 (1989).Google Scholar
7 van Hove, J. M., Pukite, P. R., Cohen, P. I., and Lent, C. S., J. Vac. Sci. Technol. A 4, 1251 (1989).Google Scholar
8 Brice, D. K., Tsao, J. Y., and Picraux, S. T., Nucl. Instr. & Meth. B44, 68 (1989).Google Scholar
9 Chen, Y. and MacKay, J. W., Phil. Mag. 19, 357 (1969).Google Scholar
10 Vossen, J. L. and Cuomo, J. J., in Thin Film Processes, Vossen, John L. and Kern, Werner., eds. (Academic Press, New York, 1978), p. 17.Google Scholar
11 Seeger, A. and Chik, K. P., Phys. Stat. Solidi 29, 455 (1968).Google Scholar
12 Chason, E., Tsao, J. Y., Horn, K. M., Picraux, S. T. and Atwater, H. A., J. Vac. Sci. Technol. A 8, 2507 (1990).Google Scholar
13 Chason, E., Bedrossian, P., Horn, K. M., Tsao, J. Y., and Picraux, S. T., Appl. Phys. Lett. 57, 1793 (1990).Google Scholar