Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-14T01:25:28.243Z Has data issue: false hasContentIssue false

Intergranular Microstructure and Oxidation Behaviour of Si3N4 Ceramics Formed with Y2O3, Al2O3 AND ZrO2

Published online by Cambridge University Press:  25 February 2011

L.K.L. Falk
Affiliation:
Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
E.U. EngstrÖm
Affiliation:
Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
K. Rundgren
Affiliation:
Swedish Ceramic Institute, Box 5403, S-402 29 Göteborg, Sweden.
Get access

Abstract

Analytical electron microscopy, X-ray diffractometry and secondary ion mass spectrometry (SIMS) have been used to characterize the intergranular microstructure of nitrided pressureless sintered (NPS) Si3N4 ceramics and the phase transformations which occur in the intergranular regions during oxidation. The phase transformations, which take place after crystallisation of the residual intergranular glass, are caused by an inward transport of oxygen and result in the development of sub-scalar phase gradients. Cubic Y2O3 stablized ZrO2 partitions from the oxynitride liquid phase sintering medium when a small amount of ZrO2(+ 3 mol% Y2O3) is added together with the Y2O3 and Al2O3 sintering additives. The latter material has a reduced oxidation resistance, presumeably due to the high oxygen conductivity of the cubic ZrO2 structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Falk, L.K.L., Dunlop, G.L. and Pompe, R., J. Mater. Sci. 20, 3545 (1985).Google Scholar
2. Falk, L.K.L., Dunlop, G.L. and Pompe, R., Mater. Sci. Eng. 71, 123 (1985).Google Scholar
3. Falk, L.K.L. and Dunlop, G.L., J. Mater. Sci. 22, 4369 (1987).Google Scholar
4. Lange, F.F., Falk, L.K.L. and Davis, B.I., J. Mater. Res. 2, 66 (1987).Google Scholar
5. Falk, L.K.L. and Engstrim, E.U., J. Am. Ceram. Soc. 74 (9), 2286–92 (1991).Google Scholar
6. Lewis, M.H., Powell, B.D., Drew, P., Lumby, R.J., North, B. and Taylor, A.J., J. Mater. Sci. 12, 61 (1977).Google Scholar
7. Lanteri, V., Chaim, R. and Heuer, A.H., J. Am. Ceram. Soc. 69 (10), C258, (1986).Google Scholar
8. Hudson, B. and Moseley, P.T., J. Solid State Chem. 19, 383 (1976).Google Scholar
9. Scott, H.G., J. Mater. Sci. 10, 1527 (1975).Google Scholar
10. Thompson, D.P., in Tailoring Multiphase and Composite Ceramics, edited by Tessler, R.E., Messing, G.L., Pantano, C.G. and Newnham, R.E. (Plenum Publishing Corp., New York, 1986), pp. 7991.Google Scholar
11. Braue, W., Wötting, G. and Ziegler, G., in Ceramic Materials and Components for Engines, edited by Bunk, W. and Hausner, H. (Verlag Deutsche Keramische Gesellschaft, Bad Honnef, 1986), pp. 503510.Google Scholar
12. Raj, R. and Lange, F.F., Acta Met. 29, 1993 (1981).Google Scholar
13. Ito, J. and Johnson, H., Am. Mineral. 53, 1940 (1968).Google Scholar
14. Clarke, D.R. and Lange, F.F., J. Am. Ceram. Soc. 63 (9-10) 586593 (1980).Google Scholar
15. Schlichting, J., in Energy and Ceramics, edited by Vincenzini, P. (Elsevier, Amsterdam, 1983), pp.390398.Google Scholar
16. Bondar, I.A. and Galakhov, F.J., Izv. Akad. Nauk. SSSR, Ser. Khim. 7, 1325 (1964).Google Scholar
17. Baumard, J.F. and Abelard, P., in Advances in Ceramics. Vol. 12. Science and Technology of Zirconia II, edited by Claussen, N., Riihle, M. and Heuer, A.H. (American Ceramic Society, Columbus, OH, 1984) pp. 555571.Google Scholar