Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T11:32:01.416Z Has data issue: false hasContentIssue false

Interfacially Confined Polymeric Systems Studied by Atomic Force Microscopy

Published online by Cambridge University Press:  10 February 2011

René M. Overney
Affiliation:
Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195–1750
Lantao Guo
Affiliation:
Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195–1750
Hirono Totsuka
Affiliation:
Department of Materials Science, State University of New York at Stony Brook, Stony Brook, N.Y. 11794–2275
Miriam Rafailovich
Affiliation:
Department of Materials Science, State University of New York at Stony Brook, Stony Brook, N.Y. 11794–2275
Jonathan Sokolov
Affiliation:
Department of Materials Science, State University of New York at Stony Brook, Stony Brook, N.Y. 11794–2275
Steven A. Schwarz
Affiliation:
Department of Physics, Queens College, Flushing, N.Y. 11765
Get access

Abstract

Within the last few years, a surface science technique, the atomic force microscopy (AFM), has evolved to be capable of simultaneously measuring tribological (friction, wear, adhesion) and rheological (elastic moduli, viscosity, hardness) properties and topography on the nanometer scale. Particularly for thin polymeric films, the AFM can be efficiently used for studying surface mechanical properties which are of fundamental importance to help predict stress and frictional behavior of interfacially confined ultrathin films.

In this paper, the following aspects will be discussed: (a) mechanical properties of ultrathin homopolymer and copolymer films, (b) dewetting dynamics of interfacially confined phase-separated homopolymers, and (c) the influence of graft-copolymers on the wetting and dewetting characteristics of homopolymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] de Gennes, P. G., Rev. Mod. Phys., vol. 57, 827, 1985.Google Scholar
[2] Brochard-Wyart, F., Martin, P., and Redon, C., Langmuir, Vol. 9, 3682, 1993.Google Scholar
[3] Reiter, G., Langmuir, Vol. 9, 1344, 1994.Google Scholar
[4] Zhao, W., Rafailovich, M. H., Sokolov, J., Fetters, L. J., Plano, R., Sanyal, M. K., Sinha, S. K., and Sauer, B. B., vol. 70, 1453, 1993.Google Scholar
[5] Liu, Y., Rafailovich, M. H., Sokolov, J., Schwarz, S. A., Zhong, X., Eisenberg, A., Kramer, E. J., Sauer, B. B., and Satija, S., Phys. Rev. Lett., vol. 73, 440, 1994.Google Scholar
[6] Lambooy, P., Phelan, K. G, Haugg, O., and Krausch, G., Phys. Rev. Lett., Vol. 76, 1110, 1996.Google Scholar
[7] Overney, R. M., Leta, D. P., Fetters, L. J., Liu, Y., Rafailovich, M. H., and Sokolov, J., J. Vac. Sci. Technol., vol. B14, 1276, 1996.Google Scholar
[8] Gersappe, D., Irvine, D., Balazs, A. C., Liu, Y., Sokolov, J., Rafailovich, M. H., Schwarz, S., and Pfeiffer, D. G., Science, Vol. 265, 1072, 1994.Google Scholar
[9] Zheng, X., Sauer, B. B., Van Alsten, J. G., Schwarz, S. A., Rafailovich, M. H., Sokolov, J., and Rubinstein, M., Phys. Rev. Lett., vol. 74, 407, 1995.Google Scholar
[10] Binnig, G., Quate, C. F., and Gerber, C., Phys. Rev. Lett., vol. 56, 930, 1986.Google Scholar
[11] Goh, M. C., Advances in Chemical Physics, vol XCI, 1–82, eds. Prigogine, I. and Rice, S.A., John Wiley & Sons, New York, 1995.Google Scholar
[12] Overney, R. M., TRIP, vol. 3, 359, 1995.Google Scholar
[13] Overney, R. M., Takano, H., and Fujihira, M., Europhys Lett, vol. 26, 443, 1994.Google Scholar
[14] Overney, R. M., Meyer, E., Frommer, J., Giintherodt, H.-J., Fujihira, M., Takano, H., and Gotoh, Y., Langmuir, Vol. 10, 1281, 1994.Google Scholar
[15] Kajiyama, T., Tanaka, K., Ohki, I., Ge, S.-R., Yoon, J.-S., and Takahara, A., Macromolecules, Vol. 27, 7932, 1994.Google Scholar
[16] Overney, R. M., Leta, D. P., Pictroski, C. F., Rafailovich, M. H., Liu, Y., Quinn, J., Sokolov, J., Eisenberg, A., and Overney, G., Phys. Rev. Lett., Vol. 76, 1272, 1996.Google Scholar
[17] Higashi, G. S., Chabal, Y. J., Trucks, G. W., and Raghavachari, K., Appl. Phys. Lett., vol. 56, 656, 1990.Google Scholar
[18] Meyer, G. and Amer, N. M., Appl. Phys. Lett., Vol. 56, 2100, 1990.Google Scholar
[19] Meyer, G. and Amer, N. M., Appl. Phys. Lett., Vol. 57, 2089, 1990.Google Scholar
[20] Marti, O., Colchero, J., and Mlynek, J., Nanotechnology, vol. 1, 141, 1990.Google Scholar
[21] Radmacher, M., Tillmann, R. W., and Gaub, H. E., Biophys. J., vol. 64, 735, 1993.Google Scholar
[22] Johnson, K. L., Kendall, K., and Roberts, A. D., Proc. Royal Soc. A, vol. 324, 301, 1971.Google Scholar
[23] Johnson, K. L., Contact Mechanics: Cambridge University Press, Cambridge, 1985.Google Scholar
[24] Radmacher, M., Tillmann, R. W., Fritz, M., and Gaub, H. E., Science, Vol. 257, 1900, 1992.Google Scholar
[25] Acheson, D. J., Elementary Fluid Dynamics: Clarendon Press, Oxford, 1992.Google Scholar
[26] Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena: John Wiley & Sons, New York, 1960.Google Scholar
[27] Overney, R. M., Meyer, E., Frommer, J., Brodbeck, D., Lüthi, R., Howald, L., Güntherodt, H. J., Fujihira, M., Takano, H., and Gotoh, Y., Nature (London), vol. 359, 133, 1992.Google Scholar
[28] Frisbie, C. D., Rozsnayai, L. F., Noy, A., Wrighton, M. S., and Lieber, C. M., Science, Vol. 265, 2071, 1994.Google Scholar
[29] Work in progress.Google Scholar