Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-16T01:51:13.684Z Has data issue: false hasContentIssue false

Interfacial Microstructures in InxGa1-xAs/GaAs Strained Layer Structures

Published online by Cambridge University Press:  25 February 2011

J. Y. Yao
Affiliation:
Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, SWEDEN
T. G. Andersson
Affiliation:
Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, SWEDEN
G. L. Dunlop
Affiliation:
Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, SWEDEN
Get access

Abstract

The interfacial microstructures of lattice strained InxGal-xAs/GaAs multiple layer structures, that were grown by molecular beam epitaxy (MBE) on GaAs (100) substrates, have been investigated and characterised by transmission electron microscopy (TEM). A g3ii weak beam imaging technique has been used to study structural imperfections at the heterointerfaces. The morphology of rough heterointerfaces, which resulted from the growth of the InxGal-xAs layers (strained layer) either in a two dimensional (2D) or in a three dimensional (3D) growth mode via island formation, was imaged using this technique. A transition from 2D to 3D growth was found to occur at a certain critical layer thickness which decreased with increasing indium fraction. In thicker layers, dislocation complexes, which may have been caused bythe formation of islands, were also observed. These complexes were primarily composed ofstacking faults bounded by partial dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fritz, I. J., Picraux, S. T., Dawson, L. R., Drummond, T. J., Laidig, W. D. and Anderson, N. G., Appl. Phys. Lett. 46 986 (1985)Google Scholar
2. Gourly, P. L., Fritz, I. J. and Dawson, L. R., Appl. Phys. Lett. 52 377 (1988)Google Scholar
3. Andersson, T. G., Chen, Z. G., Kulakovskii, V. D., Uddin, A. and Vallin, J. T., Appl. Phys. Lett. 51 752 (1987)Google Scholar
4. Matthews, J. W. and Blakeslee, A. E., J Cryst. Growth 27 188 (1974)Google Scholar
5. Yao, J. Y., Andersson, T. G. and Dunlop, G. L., Appl. Phys. Lett. 53 1420 (1988)Google Scholar
6. Schaffer, W. J., Lind, M. D., Kowalczyk, S. P. and Grant, R. W., J. Vac. Sci. Technol. B1 688 (1983)Google Scholar
7. Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N. and Roux, G. Le, Appl. Phys. Lett. 47 1099 (1985)CrossRefGoogle Scholar
8. Houzay, F., Guille, C., Moison, J. M., Henoc, P. and Barthe, F., J. Crys. Growth 81 67 (1987)CrossRefGoogle Scholar
9. Price, G. L., Appl. Phys. Lett. 53 1288 (1988)Google Scholar
10. Berger, P. R., Chang, K., Bhattacharya, P. K. and Singh, J., J. Vac. Sci. Technol. B5 (4) 1162 (1987)Google Scholar
11. Glas, F., Guille, C., Henoc, P. and Houzay, F., Inst. Phys. Conf. N.87 71 (1987)Google Scholar
12. Chang, K. H., Berger, P. R., Gibala, R., Bhattacharya, P. K., Singh, J., Mansfield, J. F. and Clarke, R., Dislocations and Interfaces in Semiconductors, Eds Rajan, K., Narayan, J. and Ast, D., The Metallurgical Society, Inc. pp157171 (1988)Google Scholar
13. Stobbs, W. M., The Physics and Fabrication of Microstructures and Microdevices, edited by Kelly, M.J. and Weisbuch, C., (Springer Proceedings in Physics 13, 1986) pp136149 CrossRefGoogle Scholar
14. Petroff, P. M., J Vac. Sci. Technol. 14 973 (1977)Google Scholar
15. Perovic, D. D. and Weatherly, G. C., J Vac. Sci. Technol. A6 1333 (1987)Google Scholar
16. McKernan, S., Cooman, B. C. De, Conner, J. R., Summerfelt, S. R. and Carter, B. C., Inst. Phys. Conf. Ser. No.87 201 (1987)Google Scholar
17. Yao, J. Y., Andersson, T. G. and Dunlop, G. L., to be publishedGoogle Scholar
18. Yao, J. Y. and Dunlop, G. L., Inst. Phys. Conf. Ser. No. 93 93 (1988)Google Scholar