Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T20:42:27.946Z Has data issue: false hasContentIssue false

Interface Controlled Amorphization of Crystalline Ni/Ti Multilayers

Published online by Cambridge University Press:  21 February 2011

Alan F. Jankowski
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550 U.S.A
Jeffrey P. Hayes
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550 U.S.A
Philip B. Ramsey
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550 U.S.A
Get access

Abstract

Solid-State Amorphization (SSA) of crystalline interfaces is observed in the Ni/Ti multilayer system. The amorphization reaction nucleates at location(s) of crystallographic disorder, i.e. the multilayer interfaces. Microstructural analyses reveal the sputter-deposited growth structure to be epitaxial with semi-coherent interfaces. Strain energy originating from interface lattice distortions varies as a function of the multilayer repeat spacing. Therefore, the interfacial energy effects the onset conditions for SSA. Differential thermal analysis is used to measure the critical temperature Tc, to the nucleation of the SSA, which is found to vary with the Ni/Ti multilayer pair spacing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
2. Schwarz, R.B., Petrich, R.R. and Saw, C.K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
3. Highmore, R.J., Greer, A.L., Leake, J.A. and Evetts, J.E., Mater. Lett. 6, 401 (1988).Google Scholar
4. Kitada, M., Shimizu, N. and Shimotsu, T., J. Mater. Sci. Lett. 8, 1393 (1989).Google Scholar
5. Walker, F.J., McKee, R.A. and List, F.A., Mat. Res. Soc. Symp. Proc. 122, 585 (1988).Google Scholar
6. Clemens, B.M., Phys. Rev. B 33, 7615 (1986).CrossRefGoogle Scholar
7. Jankowski, A.F., Thin Solid Films 220, 166 (1992).CrossRefGoogle Scholar
8. Wall, M.A. and Jankowski, A.F., in Materials Science, ed. Peachey, L.D. and Williams, D.B., XIIth ICEM Proceedings 4, 128 (San Francisco Press, San Francisco, 1990).Google Scholar
9. Jankowski, A.F. and Wall, M.A., Mat. Res. Soc. Symp. Proc. 238, 297 (1992).CrossRefGoogle Scholar
10. Chaudhuri, J., Alyan, S.M. and Jankowski, A.F., Mat. Res. Soc. Symp. Proc. 308, (1993).Google Scholar
11. Cahn, R.W. and Johnson, W.L., J. Mater. Res. 1, 724 (1986).CrossRefGoogle Scholar
12. Wolf, D., Okamoto, P.R., Yip, S., Lutsko, J.F. and Kluge, M., J. Mater. Res. 5, 286 (1990).CrossRefGoogle Scholar
13. Weissmann, M., Ramirez, R. and Kiwi, M., Phys. Rev. B 46, 2577 (1992).CrossRefGoogle Scholar