Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T20:53:16.576Z Has data issue: false hasContentIssue false

Interaction of Polar Substrates with Transition Metal Substituted Keggin-Type Heteropolyanions [X(H2O)W11SiO39]6−(X=Co2+, Mn2+) Pillared in a Mg-Al Hydrotalcite-Like Clay

Published online by Cambridge University Press:  28 February 2011

Esteban López Salinas
Affiliation:
Instituto Mexicano del Petróleo, Gerencia de Catálisis y Materiales, Eje Central Lázaro Cárdenas 152, CP 07730 México, D.F.
Pedro Salas Castillo
Affiliation:
Instituto Mexicano del Petróleo, Gerencia de Catálisis y Materiales, Eje Central Lázaro Cárdenas 152, CP 07730 México, D.F.
Yoshio Ono
Affiliation:
Tokyo Institute of Technology, Department of Chemical Engineering, Ookayama, Meguro-ku, 152 Tokyo, Japan
Get access

Abstract

The intercalation of Keggin-type [X(H2O)W11SiO39]6−(X=Co2+, Mn2+) heteropolyanions by aqueous anion exchange of 10 Å in a synthetic hydrotalcite-like Mg2Al(OH)6(NO3) results in products with interlayer spacing of ca. 10 Å. The layered array of the product and the integrity of the intercalated heteropolyanion are stable below 623 K in air as examined by XRD and IR analyses, respectively. UV-vis Diffuse Reflectance spectroscopy indicates that the water ligand in the intercalated [Co(H2O)W11SiO39]6− can be removed by thermal evacuation at 473 K leaving a coordinatively unsaturated site (in the transition metal) which reversibly coordinates water,methanol, ethanol or ammonia. ESR analysis of the intercalated [Mn(H2O)W11SiO39]6− shows that the shape of a signal at g = 2.00, arising from six-coordinated Mn2+ strongly depends on adsorption-desorption of the water ligand.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kwon, T. and Pinnavaia, J., J. Mol. Cat. 74, 23 (1992).Google Scholar
2 Katsoulis, D. E. and Pope, M. T., J. Am. Chem. Soc. 106, 2737 (1984).Google Scholar
3 Tourne, C. M., Tourne, G.F., Malik, S.A. and Weakley, T. J., J. Inorg. Nucl. Chem. 32, 3875 (1970).Google Scholar
4 Weakley, T. J. and Malik, S. A., J. Inorg. Nucl. Chem. 29, 2935 (1967).Google Scholar
5. López-Salinas, E. and Ono, Y., Bull. Chem. Soc. Jpn. 65, 2465 (1992).Google Scholar
6. Delgass, W.N., Haller, G.L., Kellerman, R. and Lunsford, J., Spectroscopy in Heterogeneous Catalysis,(Academic Press, 1979), Chap. 4, p. 86.Google Scholar
7. Thouvenot, R., Fournier, M., Franck, R., Rocchiccioli-Deltcheff, C., Inorg. Chem. 23, 598 (1984).Google Scholar