Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-29T06:07:37.187Z Has data issue: false hasContentIssue false

Interaction Between Basal Stacking Faults and Prismatic Inversion Domain Boundaries in GaN

Published online by Cambridge University Press:  17 March 2011

Philomela Komninou
Affiliation:
Theodoros Karakostas Physics Department, Aristotle University of Thessaloniki, Thessaloniki, GR-54006, Greece
Joseph Kioseoglou
Affiliation:
Theodoros Karakostas Physics Department, Aristotle University of Thessaloniki, Thessaloniki, GR-54006, Greece
Eirini Sarigiannidou
Affiliation:
Theodoros Karakostas Physics Department, Aristotle University of Thessaloniki, Thessaloniki, GR-54006, Greece
George P. Dimitrakopulos
Affiliation:
Theodoros Karakostas Physics Department, Aristotle University of Thessaloniki, Thessaloniki, GR-54006, Greece
Thomas Kehagias
Affiliation:
Theodoros Karakostas Physics Department, Aristotle University of Thessaloniki, Thessaloniki, GR-54006, Greece
Alexandros Georgakilas
Affiliation:
IESL/FORTH and Physics Department, University of Crete, Heraklion-Crete, P.O.Box 1527, 71110, Greece
Gerard Nouet
Affiliation:
ESCTM-CRISMAT, UMR6508-CNRS, ISMRA Caen Cedex, 6 boul. du Marechal Juin, 14050, France
Pierre Ruterana
Affiliation:
ESCTM-CRISMAT, UMR6508-CNRS, ISMRA Caen Cedex, 6 boul. du Marechal Juin, 14050, France
Get access

Abstract

The interaction of growth intrinsic stacking faults with inversion domain boundaries in GaN epitaxial layers is studied by high resolution electron microscopy. It is observed that stacking faults may mediate a structural transformation of inversion domain boundaries, from the low energy types, known as IDB boundaries, to the high energy ones, known as Holt-type boundaries. Such interactions may be attributed to the different growth rates of adjacent domains of inverse polarity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsuhita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys., 35, L74 (1996).Google Scholar
2. Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys., 76, 1363 (1994).Google Scholar
3. Pankove, J.I., Moustakas, T.D., Semiconductors and Semimetals: Gallium Nitride (GaN) I-II, ed. Willardson, R.K., Weber, E.R. (Academic Press, 1998).Google Scholar
4. Potin, V., Ruterana, P., Nouet, G., Pond, R. C., Morkoc, H., Phys. Rev.B, 61, 5587 (2000).Google Scholar
5. Wu, X. H., Brown, L. M., Kapolnek, D., Keller, S., Keller, B., Den-Baars, S. P., and Speck, J. S., J. Appl. Phys., 80, 3228 (1996).Google Scholar
6. Ruterana, P. and Nouet, G., Mat. Res. Soc. Symp, 595, W5.4.1 (2000).Google Scholar
7. Northrup, J. E., Neugebauer, J., Romano, L.T. Phys. Rev. Lett., 77, 103 (1996).Google Scholar
8. Potin, V., Nouet, G., Ruterana, P., Phil. Mag. A, 79 2899 (1999).Google Scholar
9. Austerman, S. B., Gehman, W. G., J. Matter. Sci., 1, 249 (1966).Google Scholar
10. Komninou, Ph., Kehagias, Th., Kioseoglou, J., Sarigiannidou, E., Karakostas, Th., Nouet, G., Ruterana, P., Amimer, K., Mikroulis, S., Georgakilas, A.. Mat. Res. Soc. Symp., 639, G3.47 (2001).Google Scholar
11. Stadelmann, P. A., Ultramicroscopy, 21, 131 (1987).Google Scholar
12. Hirth, J.P., Lothe, J., Theory of Dislocations, 2nd Ed, New York Wiley Intersciences, 345 (1982).Google Scholar