Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T00:42:54.632Z Has data issue: false hasContentIssue false

In-situ Plasma Diagnosis of Chemical Species in Microwave Plasma-assisted Chemical Vapor Deposition for the Growth of Carbon Nanotubes Using CH4/H2/NH3 Gases

Published online by Cambridge University Press:  14 March 2011

Y.S. Woo
Affiliation:
Dept. of Materials Sci. and Eng., Korea Advanced Institute of Science and Technology, Taejon, Korea
I.T. Han
Affiliation:
Display Lab., Samsung Advanced Institute of Technology, P.O. Box 111, Suwon 440-600, Korea
N.S. Lee
Affiliation:
Display Lab., Samsung Advanced Institute of Technology, P.O. Box 111, Suwon 440-600, Korea
J.E. Jung
Affiliation:
Display Lab., Samsung Advanced Institute of Technology, P.O. Box 111, Suwon 440-600, Korea
D.Y. Jeon
Affiliation:
Dept. of Materials Sci. and Eng., Korea Advanced Institute of Science and Technology, Taejon, Korea
J.M. Kim
Affiliation:
Display Lab., Samsung Advanced Institute of Technology, P.O. Box 111, Suwon 440-600, Korea, jongkim@sait.samsung.co.kr
Get access

Abstract

Synthesis of multi-wall carbon nanotubes (MWNTs) was attempted by microwave plasma enhanced chemical vapor deposition using CH4/H2/NH3 gases on Ni/Cr-coated glass at low temperature. The synthesis was investigated by optical emission spectroscopy and quadrupole mass spectroscopy. It was observed that MWNTs could be grown within a very restrictive range of gas compositions. An addition of a small amount of NH3 resulted in a decrease of C2H2, which can be used to estimate the amount of carbon sources in plasma for the growth of MWNTs, and an increase of CN and Hα radicals acting as etching species of carbon phases. These results show that carbon nanotubes can be grown only under an appropriate condition that the growing process surpasses the etching process. The optimum C2H2 /Hα ratio in a gas mixture was found to be between 1 and 3 for the MWNT growth at low temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, T. S. and Ichihashi, T., Nature (London), 363, 603 (1993)Google Scholar
2. Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Chapelle, M. Lamy de la, Lefrant, S., Deniard, P., Lee, R., and Fisher, J. E., Nature (London), 388, 756 (1997)Google Scholar
3. Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E., Chem. Phys. Lett., 236, 419 (1995)Google Scholar
4. Puretzky, A. A., Geohegan, D. B., Fan, X., and Pennycook, S. J., Appl. Phys. Lett., 76, 182 (2000)Google Scholar
5. Terrones, M., Grobert, N., Olivers, J., Zhang, J. P., Terrones, H., Kordatos, K., Hsu, W. K., Hare, J. P., Townsend, P. D., Prassides, K., Cheetham, A. K., Kroto, H. W., and Walton, D. R. M., Nature (London), 388, 52 (1997)Google Scholar
6. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provenico, P. N., Science, 282, 1105 (1998)Google Scholar
7. Kuttel, O. M.. Groening, O., Emmernegger, C., and Schlapbach, L., Appl. Phys. Lett., 73, 2113 (1998)Google Scholar
8. Sung, S. L., Tasi, S. H., Tseng, C. H., Chiang, F. K., Liu, X. W. and Shih, H. C., Appl. Phys. Lett., 74, 197 (1999)Google Scholar
9. Choi, Y. C., Bae, D. J., Lee, Y. H., Lee, B. S., Han, I. T., Choi, W. B., Lee, N. S. and Kim, J. M., Synthetic Metals, 108, 159 (2000).Google Scholar
10. Marinelli, M., Milani, E., Montuori, M., Paoletti, A., Paroli, P., and Thomas, J.. Appl. Phys. Lett., 65, 28 (1994)Google Scholar
11. Manukonda, R., Diollon, R., and Futak, T., J. Vac. Sci. Technol. A, 13, 1150 (1995)Google Scholar
12. Cui, Jingbiao, Ma, Yurong, and Fang, Rongchuan, Appl. Phys. Lett., 69, 3170 (1996)Google Scholar
13. Wu, Jin-Jen and Hong, Franklin Chua-Nan, Appl. Phys. Lett., 70, 185 (1997)Google Scholar
14. Ikeda, M., Ito, H., Hiramatsu, M., Hori, M., and Goto, T., J. Appl. Phys., 82, 4055 (1997)Google Scholar
15. Okkerse, M., Croon, M. H. J. M. de, Kleijn, C. R., Akker, H. E. van der, and Marin, G. B., J. Appl. Phys., 84, 6387 (1998)Google Scholar
16. Zhao, X., Okazaki, T., Kasuya, A., Shinoyama, H., and Ando, Y., Jpn. J. Appl. Phys., 38, 6014 (1999)Google Scholar
17. Kim, S. H. and Han, I. T., Diamond Films and Technology, 8, 425 (1998)Google Scholar