Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T15:20:56.723Z Has data issue: false hasContentIssue false

In-Situ Growth of C-Axis Oriented YBa2Cu3O7−x on Silicon with Composite Buffer Layers by Plasma Enhanced Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  26 February 2011

Jiming Zhang
Affiliation:
Advanced Technology Materials Inc., Danbury, CT 06810
Robin Gardiner
Affiliation:
Advanced Technology Materials Inc., Danbury, CT 06810
Peter S. Kirlin
Affiliation:
Advanced Technology Materials Inc., Danbury, CT 06810
Get access

Abstract

YBa2Cu3O7−x thin films have been grown in-situ on Si (100) with a composite buffer layer of Pt/Ta/ONO (ONO stands for a S1O2 / Si3N4 /SiO2 trilayer) by plasma enhanced metal organic chemical vapor deposition (PE-MOCVD). X-ray diffraction measurements indicate that c-axis oriented YBa2Cu3O7−x films are formed in-situ at substrate temperatures as low as 650 °C on Pt/Ta/ONO/Si. The composite P/Ta/ONO provided an adherent metallic interlayer and effectively prevented the interaction between YBa2Cu3O7−x and Si. Four probe resistivity measurements indicate the onset of superconductivity at 92 K and achieved zero resistance at 65 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Venkatesan, T., Chase, E. W., Wu, X. D., Inam, A., Chang, C. C., and Shakoohi, F. K., Appl. Phys. Lett. 53, 243 (1988).Google Scholar
2. Witanachchi, S., Patel, S., Kwok, H. S., and Shaw, D. T., Appl. Phys. Lett. 54, 578 (1989).Google Scholar
3. Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M., Connell, G. A. N., Boyce, J. B., and Geballe, T. H., Appl. Phys. Lett. 57, 1161 (1990).Google Scholar
4. Wu, X. D., Inam, A., Hedge, M.S., Wilkens, B., Chang, C. C., Huang, D. M., Nazar, L., Venkatesan, T., Miura, S., Matsubar, S., Miyasaka, Y., and Shohata, N., Appl. Phys. Lett. 54, 754 (1989).Google Scholar
5. Kumar, A. and Narayan, J., Appl. Phys. Lett. 59, 1785 (1991).Google Scholar
6. Jia, Q. X. and Anderson, W. A., Appl. Phys. Lett. 57, 304 (1990).Google Scholar
7. Kellett, B. J., James, J. H., Gauzzi, A., Pavuna, D., and Reinhart, F. K., Appl. Phys. Lett. 57, 1147 (1990).Google Scholar
8. Silver, R. M., Berezin, A. B., Wendman, M., and de Lozanne, A. L., Appl. Phys. Lett. 52, 2174 (1988).Google Scholar
9. For example, Chapman, B., Glow Discharge Processes, (John Willey & Sons, New York, 1980).Google Scholar
10. Lucovsky, G. and Tsu, D. V., J. Vac. Sci. Technol. A5, 2231 (1987).Google Scholar
11. Sakuma, T., Yamamichi, S., Matsubara, S., Yamaguchi, H., and Miyasaka, Y., Appl. Phys. Lett. 57, 2431 (1990).Google Scholar
12. Hatta, S., Higashino, H., Hirochi, K., Adachi, H., and Wasa, K., Appl. Phys. Lett. 53, 148 (1988).Google Scholar