Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-31T01:25:27.205Z Has data issue: false hasContentIssue false

IN-SITU Analysis Of The Microstructure of Thermally Treated Thin Copper Films

Published online by Cambridge University Press:  21 February 2011

J. Nucci
Affiliation:
Cornell University, Dept. of Materials Science and the National Nanofabrication Facility, Ithaca, New York
H. Neves
Affiliation:
Cornell University, School of E. E. and the National Nanofabrication Facility, Ithaca, New York
Y. Shacham
Affiliation:
Cornell University, School of E. E. and the National Nanofabrication Facility, Ithaca, New York
E. Eisenbraun
Affiliation:
SUNY Albany, Physics Dept., Albany, New York
B. Zheng
Affiliation:
SUNY Albany, Physics Dept., Albany, New York
A. Kaloyeros
Affiliation:
SUNY Albany, Physics Dept., Albany, New York
Get access

Abstract

Copper thin films were deposited by sputtering, electron beam evaporation, and electroless plating onto nitride membranes for TEM analysis. The samples were heat treated in-situ from room temperature to 600 °C for structural and chemical analysis. The as-deposited and heat treated microstructures were investigated. Orientation changes with heat treatment and reactions among the sample layers were analyzed by electron diffraction. This work provides baseline information for a study of the thermal evolution of copper lines.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arzt, E and Nix, W.D., J. Mater. Res. 6 (4), 731736 1991.CrossRefGoogle Scholar
2. Cho, J. and Thompson, C.V., Appl. Phys. Lett 54 (25), 25772579 1989.CrossRefGoogle Scholar
3. Arzt, E., Kraft, O., Sanchez, J., Bader, S. and Nix, W.D. in Thin Film Stresses and Mechanical Propetes III, edited by Nix, W.D., Bravan, J.C., Arzt, E., Freund, L.B. (Mater. Res. Soc. Proc. 239, Pittsburgh, PA, 1991) pp. 677682.Google Scholar
4. Venkatraman, R., Bravman, J.C., Nix, W.D., Davies, P.W., Flinn, P.A and Fraser, D.B., J. of Electronic Materials 19 (11), 12311237 1990.CrossRefGoogle Scholar
5. Gardner, D.S., Longworth, H.P. and Flinn, P.A., J. Vac. Sci. Technol. A 10 (4), 14261441 1992.CrossRefGoogle Scholar
6. Knorr, D.B., Tracy, D.P. and Rodbell, K.P., Appl. Phys. Lett. 59 (25), 32413243 1991.CrossRefGoogle Scholar
7. Lloyd, J.R., Appl. Phys. Lett. 57 (11), 11671168 1990.CrossRefGoogle Scholar
8. Sanchez, J. and Arzt, E. in Materials Reliability Issues in Microelectronics II edited by Thompson, C.V. and Lloyd, J.R. (Mater. Res. Soc. Proc. 265, Pittsburgh, PA, 1992) pp. 131142.Google Scholar
9. Kim, C. and Morris, J.W. Jr., J. Appl. Phys. 72 (5), 18371845 1992.CrossRefGoogle Scholar
10. Longworth, H.P. and Thompson, C.V., Appl. Phys. Lett. 60 (18), 22192221 1992.CrossRefGoogle Scholar
11. Sanchez, J. E. Jr., McKnelly, L.T. and Morris, J.W. Jr., J. of Electronic Materials 19 (11), 12131220 1990 CrossRefGoogle Scholar
12. Nix, W.D. and Arzt, E., Metallurgical Transactions A 23A, 20072013 (1992).CrossRefGoogle Scholar
13. Sanchez, J.E. Jr., Kraft, O., and Arzt, E., Appl. Phys. Lett. 61 (26), 31213123 1992.CrossRefGoogle Scholar
14. Keith, D.W., Soave, R.J. and Rooks, M.J., J. Vac. Sci. Tehnol. B. 9 (6), 28462850 1991 CrossRefGoogle Scholar
15. Thompson, C.V. in Annual Review of Materials Science edited by Huggins, R., Giordmaine, J., and Wachtman, J. Jr., pp. 245268.Google Scholar