Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-10T14:07:20.306Z Has data issue: false hasContentIssue false

Initial Phase Formation During Interdiffusion

Published online by Cambridge University Press:  10 February 2011

J. H. Perepezko
Affiliation:
Dept. of Mat. Sci. & Eng., Univ. of Wisconsin-Madison, WI 53706
J. S. Park
Affiliation:
Dept. of Mat. Sci. & Eng., Univ. of Wisconsin-Madison, WI 53706
K. Landry
Affiliation:
Dept. of Mat. Sci. & Eng., Univ. of Wisconsin-Madison, WI 53706
H. Sieber
Affiliation:
Dept. of Mat. Sci. & Eng., Univ. of Wisconsin-Madison, WI 53706
M. H. da Silva Bassani
Affiliation:
Dept. of Mat. Sci. & Eng., Univ. of Wisconsin-Madison, WI 53706
A. S. Edelstein
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

In multiphase materials systems involved in coatings, composites or multilayered structures, diffusion treatments often results in the development of intermediate phases at the reaction interfaces. While diffusional growth of phases has received much attention, the initial phase evolution involves a nucleation stage as well. The development of metastable phases during solid state interdiffusion demonstrates that the nucleation reaction can be controlling in some cases. For alloy systems with extensive solubility, intermediate phase nucleation is proceeded by interdiffusional mixing in order to achieve the required supersaturation. This leads to the identification of a critical concentration gradient for the onset of phase nucleation.The concentration gradient and the relative magnitudes of the component diffusivities provide a basis for a phase selection strategy and the application of a kinetic bias to modify the phase selection. For multicomponent alloy systems, the identification of the operative diffusion pathway is central to the control of phase formation. Experimental access to the nucleation stage of reaction is facilitated in thin film multilayer samples where the results from systems with both extensive and limited solubility offer new insight into the phase formation kinetics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Howe, J. M., Int. Mat. Rev. 38, 233 (1993).Google Scholar
[2] Perepezko, J. H., Bassani, M. H. da Silva, Park, J. S., Edelstein, A. S., Everett, R. K., Mat. Sci. & Eng. A 195, 1 (1995).Google Scholar
[3] Perepezko, J. H., Compos. Interfaces 1, 463 (1993).Google Scholar
[4] Thompson, C. V., J. Mater. Res. 7, 367 (1992).Google Scholar
[5] Desré, P. J. and Yavari, R., Phys. Rev. Lett. 64, 13 (1990).Google Scholar
[6] Desré, P. J., Acta Metall. Mater. 39, 725 (1991).Google Scholar
[7] Gusak, A. M., Ukr. Phys. J. 35, 725 (1990).Google Scholar
[8] Gusak, A. M. and Nasarov, A. V., J. Phys.:Condens. Matter 4, 4753 (1992).Google Scholar
[9] Cahn, J. W. and Hilliard, J. E., J. Chem. Phys. 28, 258 (1958).Google Scholar
[10] Hoyt, J. J. and Brush, L. N., J. Appl. Phys. 78,1559(1995).Google Scholar
[11] Coffey, K. R. and Barmak, K., Acta Metall. Mater. 42, 2905 (1994).Google Scholar
[12] Philibert, J., Defect and Diffusion Forum 95–98, 493 (1993).Google Scholar
[13] Highmore, H. J., Greer, A. L., Leake, J. A. and Evetts, J. E., Mater. Lett. 6, 401 (1988).Google Scholar
[14] Edelstein, A. S., Everett, R. K., Richardson, G. Y., Qadri, S. B., Altman, E. I., Foley, J. C. and Perepezko, J. H., J. Appl. Phys. 76, 7850 (1994).Google Scholar
[15] E. Ma Thompson, C. V. and Clevenger, L. A., J. Appl. Phys. 69,2211(1991).Google Scholar
[16] Michaelsen, C., Lucadamo, G. and Barmak, K., J. Appl. Phys. 80, 6689(1996).Google Scholar
[17] Barmak, K., Michaelsen, C. and Lucadamo, G., J. Mater. Res. 12, 133 (1997).Google Scholar
[18] Spaepen, F. and Thompson, C. V., Appl. Sur. Sci. 38, 1(1989).Google Scholar
[19] Bassani, M. H. da Silva, Perepezko, J. H., Edelstein, A. S. and Everett, R. K., Scripta Mat., 37, 227 (1997).Google Scholar
[20] Mehan, R. L. and McKee, D. W., J. of Mat. Sci. 11, 1009 (1976).Google Scholar
[21] Chou, T. C., Joshi, A. and Wadsworth, J., J. Mater. Res. 6, 796 (1991).Google Scholar
[22] Backhaus-Ricoult, M., Acta Metall. Mater. 40, S95 (1992).Google Scholar
[23] Handbook of Ternary Alloy Phase Diagrams, Vol.6, edited by Villars, P., Prince, A. and Okamoto, H. (ASM International, 1995) p. 7237.Google Scholar
[24] Ma, Z. Y., Ning, X. G., Lu, Y. X. Bi, J. and Wen, L. S., Scripta Metall. Mater. 31, 131 (1994).Google Scholar
[25] Everett, R. K., Henshaw, W., Simons, D. G. and Land, D. J., Composite Interface, 2, 31 (1996).Google Scholar
[26] Landry, K., Sieber, H., Sui, M. and Perepezko, J. H., This proceedings.Google Scholar
[27] van Loo, F.J.J., Prog. Solid St. Chem. 20,47 (1990).Google Scholar
[28] Zang, L.,Qui, G. and Wu, J., Scripta Metall. Mater. 32, 1683 (1995).Google Scholar