Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-02T02:44:07.018Z Has data issue: false hasContentIssue false

InGaAs/InP Multiquantum well Structures Grown by Trichloride Vapor Phase Epitaxy

Published online by Cambridge University Press:  28 February 2011

K. W. Wang
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
V. D. Mattera
Affiliation:
AT&T Bell Laboratories, Solid State Technology Center, Breinigsville, PA 18031-9359
K. Tai
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. N. G. Chu
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. D. Roccasecca
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. Luther
Affiliation:
AT&T Bell Laboratories, Solid State Technology Center, Breinigsville, PA 18031-9359
G. Livescusecca
Affiliation:
AT&T Bell Laboratories, Solid State Technology Center, Breinigsville, PA 18031-9359
Get access

Abstract

Long wavelength (l.3pm<X<l.551un) InGaAs/InP multiquantum well (MQW) PIN structures in which the quantum confined Stark effect can be observed, are of particular interest because of their potential for high modulation contrast ratios and high speed operation. The chemistry of trichloride VPE lends itself to the growth of high purity InGaAsP heterostructures which are essential for the realization of high performance optical modulators and switches. In this study, we investigate the application of multi-frit trichloride VPE for the highly uniform epitaxial growth of InGaAs/InP MQW structures on two-inch InP substrates for advanced photonic device applications. The growth of MQW structures with various well thicknesses was studied as was the effect of substrate orientation. The structures have been characterized by infrared absorption and photoluminescence spectroscopy, cross-sectional transmission electron microscopy and double crystal x-ray diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Olsen, G. H., in Vapor-phase Epitaxy of GaInAsP in GalnAsP Alloy Semiconductors, edited by Pearsall, T. P. (John Wiley, New York, 1982), p. 11.Google Scholar
2. Parker, E. H. C., The Technology and Physics of Molecular Beam Epitaxy (Plenum Press, New York, 1985).Google Scholar
3. Razeghi, M., in Semiconductors and Semimetals, Vol. 22A, edited by Tsang, W. T. (Academic Press, San Diego, 1985), p. 299.Google Scholar
4. Tsang, W. T., in Beam Processing Technologies, edited by Einspruch, N. G. et al. (Academic Press, New York, in press).Google Scholar
5. Panish, M. B., Temkin, H. and Sumski, S., J. Vac. Sci. Techol. 133, 657 (1985).Google Scholar
6. Shaw, D. W., in Crystal Growth, Vol. 1, edited by Goodman, C. H. L. (Plenum, New York, 1974), pp. 148.Google Scholar
7. Shaw, D. W., J. Phys. Chem. Solids 36, 111 (1975).Google Scholar
8. Shaw, D. W., J. Cryst. Growth 8, 117 (1971).Google Scholar
9. Cox, H. M., Prior, A. S. and Kerimidas, V. G., in Proc. 10th Intern. Symp. on GaAs and Related Compounds, 1982, Inst. Phys. Conf. Sec. 65. edited by Stillman, G. E. (The Institute of Physics, Bristol and London, 1982), pp. 133140.Google Scholar
10. Vohl, P., J. Cryst. Growth 54, 101 (1981).Google Scholar
11. Clarke, R. C., J. Cryst. Growth 54, 88 (1981).Google Scholar
12. Cox, H. M., Koza, M. A., Kerimidas, V. G. and Young, M. J., J. Cryst. Growth 73, 523 (1985).CrossRefGoogle Scholar
13. Hollenhorst, J. N., Ekholm, D. T., Geary, J. M., Mattera, V. D., Jr., Pawelek, R., in High Frequency Analog Communications, SPIE Proc. 995 (Society of Photo-Optical Instrumentation Engineers, Bellingham, 1989) p. 53.CrossRefGoogle Scholar
14. Lentine, A. L., Hinton, H. S., Miller, D. A. B., Henry, J. E., Cunningham, J. E. and Chirovsky, L. M. F., Appl. Phys. Lett. 52, 1419 (1988).Google Scholar
15. Bar-Joseph, I., Klingshim, C., Miller, D. A. B., Chemla, D. S., Koren, V., and Miller, B. I., Appl. Phys. Lett. 50, 1010 (1987).Google Scholar
16. Temkin, H., Gershoni, D. and Panish, M. B., Appl. Phys. Lett. 50, 1776 (1987).CrossRefGoogle Scholar
17. Rejman-Greene, M. A. Z., Scott, E. G., and McGoldrick, E., Electron Lett. 24, 1583 (1988).Google Scholar
18. Mattera, V. D. Jr, Capasso, F., Allam, J., Hutchinson, A. L., Dick, J., Brown, J. M., and Westphal, A., J. Appl. Phys. 60, 2609 (1986).Google Scholar
19. Cox, H. M., J. Cryst. Growth 69, 641 (1984).CrossRefGoogle Scholar
20. Cox, H. M., Morais, P. C., Hwang, D. M., Bastos, P., Gmitter, T. J., Nazar, L., Worlock, J. M., Yablonovitch, E. and Hummel, S. G., in Proceedings of 1988, Int. GaAs and Rel Compound Conf. (Institute of Physics, Bristol and London, in press).Google Scholar
21. Morals, P. C., Cox, H. M., Bastos, P. L., Hwang, D. M., Worlock, J. M., Yablonovitch, E., and Nahory, R. E., Appl. Phys. Lett. 54, 442 (1989).Google Scholar
22. Vandenberg, J. M., Hamm, R. A., Panish, M. B., and Temkin, H., J. Appl. Phys. 62, 1278 (1987).CrossRefGoogle Scholar