Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T11:25:02.056Z Has data issue: false hasContentIssue false

InGaAs/GaAs Quantum Dot Interdiffusion Induced by Cap Layer Overgrowth

Published online by Cambridge University Press:  10 February 2011

J. Jasinski
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland
A. Babinski
Affiliation:
Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland
M. Czeczott
Affiliation:
Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland
R. Bozek
Affiliation:
Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland
Get access

Abstract

The effect of thermal treatment during and after growth of InGaAs/GaAs quantum dot (QD) structures was studied. Transmission electron microscopy and atomic force microscopy confirmed the presence of interacting QDs, as was expected from analysis of temperature dependence of QD photoluminescence (PL) peak. The results indicate that the effect of post-growth annealing can be similar to the effect of elevated temperature of capping layer growth. Both, these thermal treatments can lead to a similar In and Ga interdiffiusion resulting in a similar blue-shift of QD PL peak.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Arakawa, Y., Sakaki, H., Appl. Phys. Lett. 40, 939 (1982).Google Scholar
2 Ledentsov, N. N., Shchukin, V. A., Grundmann, M., Kirstaedter, N., Bohrer, J., Schmidt, O., Bimberg, D., Ustinov, V. M., Egorov, A. Yu., Zhukov, A. E., Kop'ev, P. S., Zaitsev, S. V., Gordeev, N. Yu., Alferov, Z. I., Borovkov, A., Kosogov, A. O., Ruvimov, S. S., Werner, P., Gosele, U., Heydenreich, J., Phys. Rev. B 54, 8743 (1996).Google Scholar
3 Bodefeld, M. C., Warburton, R. J., Karrai, K., Kotthaus, J. P., Medeiros-Ribeiro, G., Petroff, P. M., Appl. Phys. Lett. 74, 1839 (1999).Google Scholar
4 Yano, K., Ishii, T., Hashimoto, T., Kobayashi, T., Murai, F., Seki, K., IEEE Trans. Electron Devices 41, 1628 (1994).Google Scholar
5 Dong, P., Towe, E., Kennerly, S., Appl. Phys. Lett. 73, 1937 (1998).Google Scholar
6 Maimon, S., Finkman, E., Bahir, G., Schacham, S. E., Garcia, J. M., Petroff, P. M., Appl. Phys. Lett. 73, 2003 (1998).Google Scholar
7 Xu, S. J., Chua, S. J., Mei, T., Wang, X. C., Zhang, X. H., Karunasiri, G., Fan, W. J., Wang, C. H., Jiang, J., Wang, S., Xie, X. G., Appl. Phys. Lett. 73, 3153 (1998).Google Scholar
8 Eaglesham, D. J., Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
9 Leon, R., Fafard, S., Leonard, D., Merz, J. L., Petroff, P. M., Appl. Phys. Lett. 67, 521 (1995).Google Scholar
10 Leon, R., Lobo, C., Clark, A., Bozek, R., Wysmolek, A., Kurpiewski, A., and Kaminska, M., J. Appl. Phys. 84, 248 (1998).Google Scholar
11 Lobo, C. and Leon, R., J. Appl. Phys. 83, 4168 (1998).Google Scholar
12 Leon, R., Yong, K., Jagadish, C., Gal, M., Zou, J., Cockayne, D. J. H., Appl. Phys. Lett. 69, 1888 (1996).Google Scholar
13 Malik, S., Roberts, C., Murray, R., Pate, M., Appl. Phys. Lett. 71, 1987 (1997).Google Scholar
14 Lobo, C., Leon, R., Fafard, S., Piva, P. G., Appl. Phys. Lett. 72, 2850 (1998).Google Scholar
15 Leon, R., Williams, D. R. M., Krueger, J., Weber, E. R., Melloch, M. R., Phys. Rev. B 56, R4336 (1997).Google Scholar
16 Xu, S. J., Wang, X. C., Chua, S. J., Wang, C. H., Fan, W. J., Jiang, J., Xie, X. G., Appl. Phys. Lett. 72, 3335 (1998).Google Scholar
17 Hsu, T. M., Lan, Y. S. and Chang, W. -H., Yen, N. T. and Chyi, J. -I., Appl. Phys. Lett. 76, 691 (2000).Google Scholar
18 Xie, Q., Chen, P., Madhukar, A., Appl. Phys. Lett. 65, 2051 (1994).Google Scholar
19 Lin, X. W., Washburn, J., Liliental-Weber, Z., Weber, E. R., Sasaki, A., Wakahara, A., Nabetani, Y., Appl. Phys. Lett. 65, 1677 (1994).Google Scholar
20 Mirin, R. P., Ibbetson, J. P., Bowers, J. E., Gossard, A. C., J. Cryst. Growth, 175/176, 696 (1997).Google Scholar
21 Pistol, M. -E., Carlsson, N., Persson, C., Seifert, W., Samuelson, L., Appl. Phys. Lett. 67, 1438 (1995).Google Scholar
22 Lian, G. D., Yuan, J., Brown, L. M., G, H. Kim, Ritchie, D. A., Appl. Phys. Lett. 73, 49 (1998).Google Scholar
23 Garcia, J. M., Mankad, T., Holtz, P. O., Wellman, P. J., and Petroff, P. M., Appl. Phys. Lett. 72, 3172 (1998).Google Scholar
24 Leon, R., Okuno, J. O., Lawton, R. A., Stevens-Kalceff, M., Phillips, M. R., Zou, J., Cockayne, D. J. H., Lobo, C., Appl. Phys. Lett. 74, 2301 (1999).Google Scholar
25 Wang, G., Fafard, S., Leonard, D., Bowers, J. E., Merz, J. L., and Petroff, P. M., Appl. Phys. Lett. 64, 2815 (1993).Google Scholar
26 Lambkin, J. D., Dunstan, D. J., Homewood, K. P., Howard, L. K., and Emeny, M. T., Appl. Phys. Lett. 57, 1986 (1990).Google Scholar
27 Lobo, C., Leon, R., Marcinkievicius, S., Yang, W., Sercel, P. C., Liao, X. Z., Zou, J., and Cockayne, D. J. H., Phys. Rev. B 60, 16647 (1999).Google Scholar