Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-22T08:09:19.678Z Has data issue: false hasContentIssue false

(In,Ga)As Quantum Dot Array Formation by Self-Organized Anisotropic Strain Engineering of an (In,Ga)As/GaAs Quantum Wire Template: Shallow-Pattern Effects

Published online by Cambridge University Press:  01 February 2011

T. Mano
Affiliation:
eiTT/COBRA Inter-University Research Institute, Eindhoven University of TechnologyP. O. Box 513, 5600MB Eindhoven, the Netherlands
R. Nötzel
Affiliation:
eiTT/COBRA Inter-University Research Institute, Eindhoven University of TechnologyP. O. Box 513, 5600MB Eindhoven, the Netherlands
G. J. Hamhuis
Affiliation:
eiTT/COBRA Inter-University Research Institute, Eindhoven University of TechnologyP. O. Box 513, 5600MB Eindhoven, the Netherlands
T. J. Eijkemans
Affiliation:
eiTT/COBRA Inter-University Research Institute, Eindhoven University of TechnologyP. O. Box 513, 5600MB Eindhoven, the Netherlands
E. Smalbrugge
Affiliation:
eiTT/COBRA Inter-University Research Institute, Eindhoven University of TechnologyP. O. Box 513, 5600MB Eindhoven, the Netherlands
J. H. Wolter
Affiliation:
eiTT/COBRA Inter-University Research Institute, Eindhoven University of TechnologyP. O. Box 513, 5600MB Eindhoven, the Netherlands
Get access

Abstract

One-dimensional (In,Ga)As quantum dot (QD) arrays are formed on planar singular and shallow-patterned (mesa gratings) GaAs (100) substrates by self-organized anisotropic strain engineering of an (In,Ga)As/GaAs quantum wire (QWR) superlattice (SL) template in molecular beam epitaxy. On planar singular substrates, highly uniform one-dimensional single QD arrays, which are extended over 10 μm length, are realized with efficient photoluminescence. The shallow mesa gratings along [0–11] and [011] induce two different types of steps which differently affect the surface migration processes crucial for QWR template development, i.e., strain driven In adatom migration along [011] and surface reconstruction induced adatom migration along [0–11]. While type-A steps along [0–11] have no significant effect on the adatom migration along [011] and [0–11], type-B steps along [011] hinder the surface reconstruction induced migration along [0–11] to prevent formation of QWR and ordered QD arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mui, D. S. L., Leonard, D., Coldren, L. A. and Petroff, P. M., Appl. Phys. Lett. 66, 1620 (1995).Google Scholar
2. Konkar, A., Madhukar, A. and Chen, P., Appl. Phys. Lett. 72, 220 (1998).Google Scholar
3. Seifert, W., Carlsson, N., Petersson, A., Wernersson, L. E. and Samuelson, L., Appl. Phys. Lett. 68, 1684 (1996).Google Scholar
4. Nakamura, Y., Schmidt, O. G., Jin-Phillipp, N. Y., Kiravittaya, S., Müller, C., Eberl, K., Gräbeldinger, H. and Schweizer, H., J. Cryst. Growth 242, 339 (2002).Google Scholar
5. Ma, W., Nötzel, R., Trampert, A., Ramsteiner, M., Zhu, H., Schönherr, H. -P. and Ploog, K. H., Appl. Phys. Lett. 78, 1297 (2001).Google Scholar
6. Mano, T., Nötzel, R., Hamhuis, G. J., Eijkemans, T. J. and Wolter, J. H., J. Appl. Phys. 92, 4043 (2002).Google Scholar
7. Mano, T., Nötzel, R., Hamhuis, G. J., Eijkemans, T. J. and Wolter, J. H., J. Cryst. Growth 251, 264 (2003).Google Scholar
8. Mano, T., Nötzel, R., Hamhuis, G. J., Eijkemans, T. J. and Wolter, J. H., Appl. Phys. Lett. 81, 1705 (2002).Google Scholar
9. Mano, T., Nötzel, R., Hamhuis, G. J., Eijkemans, T. J. and Wolter, J. H., J. Appl. Phys. 95, 109, (2004).Google Scholar
10. Gong, Q., Nötzel, R., Schönherr, H. -P. and Ploog, K. H., Physica E 13, 1176 (2002).Google Scholar
11. Kitamura, M., Nishioka, M., Oshinowo, J. and Arakawa, Y., Appl. Phys. Lett. 66, 3663 (1995).Google Scholar
12. Kasu, M. and Kobayashi, N., J. Cryst. Growth 170, 246 (1997)Google Scholar
13. Yamaguchi, H. and Horikoshi, Y., Jpn. J. Appl. Phys. 30, 802 (1991).Google Scholar
14. Tsukamoto, S. and Koguchi, N., J. Cryst. Growth 201/202, 118 (1999).Google Scholar