Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-13T13:16:54.077Z Has data issue: false hasContentIssue false

Infrared Spectroscopy of Covalently Bonded Species on Silicon Surfaces: Deuterium, Chlorine, and Cobalt Tetracarbonyl

Published online by Cambridge University Press:  10 February 2011

Huihong Luo
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305-5080
Christopher E. D. Chidsey
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305-5080
Yves Chabal
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Get access

Abstract

We report the formation of deuterium-terminated Si(111) and Si(100) surfaces in deuterated aqueous KF. The reaction of a deuterated Si(100) surface with H2O is investigated. We find that H2O etches the surface to give hydrogen termination and oxidized silicon hydrides. Hydrogenterminated surfaces react with various reagents under non-UHV conditions to form other covalent bonded species, including Cl-Si and Co(CO)4-Si. These species are characterized by polarized ATR and transmission FTIR. On Cl-Si(111) surfaces, Cl-Si is perpendicular to the surface. Chlorine-terminated Si(100) reacts with H2O to produce the hydrogen terminated surface. On Co(CO)4-Si(111) surfaces, one carbonyl is perpendicular to the surface, and the other three are approximately parallel to the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohmi, T., Kotani, K., Teramoto, A., and Miyashita, M., IEEE Electron Device Lett. 12, 652 (1991).CrossRefGoogle Scholar
2. Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K., Appl.Phys.Lett. 12(7), 656658 (1990).CrossRefGoogle Scholar
3. Watanabe, S., Appl. Phys. Lett. 67 (24), 36203622 (1995).CrossRefGoogle Scholar
4. Burrows, V. A., Chabal, Y. J., Higashi, G. S., Raghavachri, K., and Christman, S. B., Appl. Phys. Lett., 53(11), 9981000 (1988).CrossRefGoogle Scholar
5. Kinoshita, K. and Nishiyama, I., J. Vac. Sci. Technol., A, 13(6), 2709–14 (1995).CrossRefGoogle Scholar
6. Sugino, R., Nara, Y., Horie, H., Ito, T., J. Appl. Phys., 76, 5498 (1994).CrossRefGoogle Scholar
7. Wade, C.P., Luo, H., Dunbar, W.L., Linford, M.R., and Chidsey, C.E.D., MRS Symp. Proc. 451 (1997).Google Scholar
8. Niwano, M., Kageyama, J., Kurita, K., Kinashi, K., Takahashi, I., and Miyamoto, N., J. Appl. Phys., 76(4), 21572163 (1994).CrossRefGoogle Scholar
9. Yates, J. T., Cheng, C. C., Gao, Q., Colaianni, M. L., and Choyke, W. J., Thin Solid Films, 225, 150154 (1993).CrossRefGoogle Scholar
10. Braterman, P.S., Metal Carbonyl Spectra, Academic Press, 1975.Google Scholar