Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T21:24:14.493Z Has data issue: false hasContentIssue false

Infrared Laser Photodesorption of Adsorbed Phases

Published online by Cambridge University Press:  21 February 2011

Ingo Hussla
Affiliation:
IBM Research Laboratory K33–281, San Jose, CA 95193.
T. J. Chuang
Affiliation:
IBM Research Laboratory K33–281, San Jose, CA 95193.
Get access

Abstract

An infrared laser generated from a Nd:YAG laser mixing with a dye laser has been used as a tunable coherent pulsed laser source to photodesorb ammonia from a Cu(100) surface after excitation of the ν3 mode. Timeresolved quadrupole mass spectrometry is sucessfully applied to determine the translational temperatures of the desorbing species from a monolayer coverage on the metal surface. Evidence for desorption induced by vibrational excitation has been obtained and the results are discussed in terms of rapid energy transfer mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chuang, T.J., Surf. Sci. Reports 3(1), 1 (1983).CrossRefGoogle Scholar
2. Heidberg, J., Stein, H., Nestmann, A., Hoefs, E., Hussla, I. in symposium Laser-Solid Interactions and Laser Processing-1978, Materials Research Society, Boston, Google Scholar
2a AIP Conf. Proc. No.50, eds.: Ferris, S.D., Leamy, H.J. and Poate, J.M., AIP, New York, 1979, p. 49.Google Scholar
3. Surface Studies with Lasers, Proc. Int. Conf., Mauterndorf, Austria 1983, eds.: Aussenegg, F.R., Leitner, A., Lippitsch, M.E., Springer Series in Chemical Physics 33, Springer Verlag, Berlin 1983.Google Scholar
4. Heidberg, J., Stein, H., Riehl, E., and Nestmann, A., Z. Phys. Chem. N.F. 121, 145 (1980).Google Scholar
4a Heidberg, J., Stein, H. and Riehl, E., Phys. Rev. Lett. 49, 666 (1982).Google Scholar
5. Chuang, T. J., J.Chem Phys. 76, 3828 (1982).Google Scholar
5a Chuang, T.J. and Seki, H., Phys. Rev. Lett. 49, 382 (1982).Google Scholar
6. Kato, K., IEEE J. Quant. Electronics, Vol. QE–16(10), 1017(1980).CrossRefGoogle Scholar
7. see former experimental descriptions: Chuang, T.J., in Proceedings of the 3rd Int. Conf. on Vibrations at Surfaces (Asilomar, CA, 1983), eds.: Brundle, C.R. and Morawitz, H. (Elsevier, Amsterdam, 1983);Google Scholar
7a and J. Electr. Spectr. Relat. Phenom. 29, 125 (1983).Google Scholar
8. Hussla, I., Viswanathan, R., Burgess, D. R. Jr., Stair, P.C. and Weitz, Eric, in preparation for publication in Rev.Sci.Instrum.Google Scholar
8a Burgess, D.R. Jr., Viswanathan, R., Hussla, I., Stair, P.C. and Weitz, Eric, J. Chem. Phys. 79(10), 5200 (1983).CrossRefGoogle Scholar
9. Hussla, I. and Chuang, T. J. to be publishedGoogle Scholar
10. Redhead, P.A., Vacuum 12, 203 (1962).Google Scholar
11. Wedler, G. and Ruhmann, H., Surf. Sci. 121, 464(1982).Google Scholar
12. Kreuzer, H.J. and Lowy, D.N., Chem. Phys. Lett. 78, 50(1983).Google Scholar
12a Gortel, Z.W., Kreuzer, H.J., Piercy, P. and Teshima, , Phys. Rev. B27, 5066(1983).Google Scholar