Hostname: page-component-6d856f89d9-jhxnr Total loading time: 0 Render date: 2024-07-16T08:29:01.308Z Has data issue: false hasContentIssue false

Influence Of Substrate Off-Cut On The Defect Structure In Relaxed Graded Si-Ge/Si Layers

Published online by Cambridge University Press:  15 February 2011

Srikanth B. Samavedam
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
F. Romanato
Affiliation:
INFM-Department of Physics “G. Galilei”, University of Padova, via Marzolo 8, Padova, Italy
M. S. Goorsky
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
E. A. Fitzgerald
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Relaxed graded Si-Ge/Si layers can be used in a variety of micro-electronics applications such as templates for III-V/Si integration, in high speed field effect transistor (FET) structures and as detectors in optical communication. Each of these applications requires a different final Ge concentration in the graded Si-Ge layer. With increasing Ge content in the graded layer, some of the materials concerns that need to be addressed are- (i) a high surface roughness, (ii) the formation of dislocation pile-ups, and (iii) an increase in the threading dislocation density. We have shown that there is a substantial improvement in the surface roughness and the dislocation pile-up density of the graded Si-Ge layers by depositing on (001) 6° off-cut substrates. The substrate miscut also facilitates favorable intersections of {111} planes that aid reactions between the 60° dislocations to form edge dislocations with Burgers vectors of the type 1/2<110> and <100> resulting in a novel hexagonal dislocation structure. Such reactions occurred more readily in the Ge-rich regions of the graded layers where the growth temperature was high enough to aid dislocation climb. The edge dislocations with in-plane Burgers vectors lack a tilt component and the decreased rate of tilting in the Ge-rich regions is confirmed by triple crystal X-ray reciprocal space maps. This novel dislocation structure offers opportunities to explore new processes which may eliminate spatially variant strain fields in relaxed epitaxial layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fitzgerald, E. A., Xie, Y. H., Monroe, D., Silverman, P. J., Kuo, J. M., Kortan, A. R., Thiel, F. A. and Weir, B. E., J. Vac. Sci. Technol. B 10, 1807 (1992).Google Scholar
2. Schäffler, F., Tobben, D., Herzog, H. R., Abstreiter, G. and Hollander, B., Semicond. Sci Technol. 7, 260(1992).Google Scholar
3. Ismail, K., Chu, J. O. and Meyerson, B. S., Appl. Phys. Lett. 64, 3124 (1994).Google Scholar
4. Arienzo, M., Comfort, J. H., Crabbe, E. F., Harame, D. L., Iyer, S. S., Kesavan, V. P., Meyerson, B. S., Patton, G., Stork, J. M. C. and Sun, Y. C., Microelectronic Engg. 19, 519 (1992).Google Scholar
5. Fitzgerald, E. A., Xie, Y. H., Green, M. L., Brasen, D., Kortan, A. R., Michel, J., Mill, Y. J. and Weir, B. E., Appl. Phys. Lett. 59, 811 (1991).Google Scholar
6. LeGoues, F. K., Meyerson, B. S., Morar, J. F. and Kirchner, P. D., J. Appl. Phys. 71, 4230 (1992).Google Scholar
7. Fitzgerald, E. A., Ast, D. G., Kirchner, P. D., Pettit, G. D. and Woodall, J. M., J. Appl. Phys. 63, 693 (1988).Google Scholar
8. Cullis, A. G., Robbins, D. J., Bamett, S. J. and Pidduck, A. J., J. Vac. Sci. Technol. A 12, 1924 (1994).Google Scholar
9. Albrecht, M., Christiansen, S., Michler, J., Dorch, W. and Strunk, H. P., Appl. Phys. Lett. 67, 1232 (1995).Google Scholar
10. Jesson, D. E., Pennycook, S. J., Baribeau, J.-M. and Houghton, D. C., Phys. Rev. Lett. 71, 1744 (1993).Google Scholar
11. Samavedam, S. B. and Fitzgerald, E. A., submitted to J. Appl. Phys. (1996).Google Scholar
12. Ayers, J. E., Ghandhi, S. K. and Schowalter, L. J., J. Crystal Growth 113, 430(1991).Google Scholar
13. LeGoues, F. K., Mooney, P. M. and Chu, J. O., Appl. Phys. Lett. 62, 140(1993).Google Scholar
14. Gillard, V. T., Nix, W. D. and Freund, L. B., J. Appl. Phys. 76, 7280 (1994).Google Scholar
15. Kightley, P., Goodhew, P. J., Bradley, R. R. and Augustus, P. D., J. Cryst. Growth 112, 359 (1991).Google Scholar
16. Mazzer, M., Camera, A., Drigo, A. V. and Ferrari, C., J. Appl. Phys. 68, 531(1990)Google Scholar
17. Hedges, J. M. and Mitchell, J. W., Phil. Mag. 44, 223 (1953).Google Scholar
18. Amelinckx, S., Acta Metall. 6, 34 (1958).Google Scholar