Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-27T18:23:22.662Z Has data issue: false hasContentIssue false

Influence of organic matter in the prediction of iodine migration in natural environment

Published online by Cambridge University Press:  11 February 2011

Pascal Reiller
Affiliation:
DPC/SECR/LSRM, Bâtiment 391, pièce 40, F-91191 Gif-sur-Yvette Cedex, France
Valérie Moulin
Affiliation:
CEA, CE Saclay, Nuclear Energy Division.
Get access

Abstract

Halogenation of phenolic moieties is one of the most important reactions between humic substances (HS) and iodine or chlorine. These reactions were studied in order to assess the importance of these interactions with reduced (I) and oxidised (I2) form of iodine. I was fixed by the addition of Na2S2O3. After separation of HS and I by ultrafiltration, no significant uptake was evidenced in the time framework of this study. The consumption of I2(aq) by HS was followed by the decay of I3 absorbance (351 nm). It comes out that (i) when I is fixed by Na2S2O3, no interaction with HS could be quantified; (ii) I2(aq) does react with HS but the kinetics cannot be linearalised. This study confirms the significance of iodine-organic matter interactions as a governing process for iodine migration in surface environment. More studies are on going to develop predictive models of iodination kinetics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ashmore, C. B., Gwyther, J. R. and Sims, H. E., Nucl. Eng. Des. 166, 347 (1996).Google Scholar
2. Luckett, L. W. and Stotler, R. E., J. Nucl. Med. 21, 477 (1980).Google Scholar
3. Sheppard, M., Thibault, D. and Smith, P., Appl. Geochem. 4, 423 (1989).Google Scholar
4. Johanson, K. J., “Iodine in soil“, Technical report, TR 00–21 SKB (2000).Google Scholar
5. Pedersen, K. M., Laurberg, P., Nohr, S., Jorgensen, A. and Andersen, S., Eur. J. Endocrinol. 140, 400 (1999).Google Scholar
6. Andersen, S., Petersen, S. B. and Laurberg, P., Eur. J. Endocrinol. 147, 663 (2002).Google Scholar
7. Lee, C. F.Kinetics of reactions between chlorine and phenolic compounds. Principles and Applications of water chemistry proceedings”, ed. Faust, S. D. and Hunter, J. V., (Wiley, 1967), pp. 54.Google Scholar
8. Rook, J. J., Water Treatment Exam 23, 234 (1974).Google Scholar
9. Christiansen, J. and Carlsen, L., Radiochim. Acta 52/53, 327 (1991).Google Scholar
10. Wershaw, R. L., Environ. Sci. Technol. 27, 814 (1993).Google Scholar
11. von Wandruszka, R., Soil Sci. 163, 921 (1998).Google Scholar
12. Piccolo, A., Nardi, S. and Concheri, G., Chemosphere 33, 595 (1996).Google Scholar
13. Plancque, G., Amekraz, B., Moulin, V., Toulhoat, P. and Moulin, C., Rapid Comm. Mass Spectro. 15, 827 (2001).Google Scholar
14. Rädlinger, G. and Heumann, K. G., Environ. Sci. Technol. 34, 3932 (2000).Google Scholar
15. Mercier, F., Moulin, V., Guittet, M. J., Barré, N., Toulhoat, N., Gautier-Soyer, M. and Toulhoat, P., Radiochim. Acta 88, 779 (2000).Google Scholar
16. Moulin, V., Reiller, P., Amekraz, B. and Moulin, C., Rapid Commun. Mass Spectrom. 15, 2488 (2001).Google Scholar
17. Warner, J. A., Casey, W. H. and Dahlgren, R. A., Environ. Sci. Technol. 34, 3180 (2000).Google Scholar
18. Exner, O.The Hammet equation - The present position”, ed. Chapman, N. B. and Shorter, J., (Plenum Press, 1972), pp. 1.Google Scholar
19. Kim, J. I., Buckau, G., Klenze, R., Rhee, D. S. and Wimmer, H., “Characterisation and complexation of humic acids“, EUR 13181 CCE (1991).Google Scholar
20. Charlot, G., “Analyse quantitative minérale”, ed. (Masson, Paris, 1961), pp‥Google Scholar
21. Wong, G. T. F., Reviews in Aquatic Sciences 4, 45 (1991).Google Scholar
22. Morrison, M.Iodination of tyrosine: Isolation of lactoperoxidase (Bovine)”, ed. Tabor, H. and Tabor, C., (Academic Press, 1970), pp. 653.Google Scholar
23. Bichsel, Y. and von Gunten, U., Anal. Chem. 71, 34 (1999).Google Scholar
24. Ramette, R. W. and Sandford, R. W., J. Am. Chem. Soc. 87, 5001 (1965).Google Scholar
25. Caceci, M. and Moulin, V.Investigation of humic acid samples of different sources by photon correlation spectroscopy”, ed. Allard, B., Boren, H. and Grimvall, A., 1991), pp. 97.Google Scholar
26. Ephraim, J. H. and Marinsky, J. A., Anal. Chim. Acta 232, 171 (1990).Google Scholar
27. Cornel, P. R., Summers, R. S. and Roberts, P. V., J. Colloid Interface Sci. 110, 149 (1986).Google Scholar
28. Bichsel, Y. and von Gunten, U., Environ. Sci. Technol. 34, 2784 (2000).Google Scholar
29. Moore, J. W. and Pearson, R. G., “Kinetics and mechanism, third edition”, ed. (John Wiley & Sons, 1981), pp. 455.Google Scholar
30. Benedetti, M. F., van Riemsdijk, W. H. and Koopal, L. K., Environ. Sci. Technol. 30, 1805 (1996).Google Scholar
31. Lefrancois, L., Belnet, F., Noel, D. and Tondre, C., Sep. Sci. Technol. 34, 755 (1999).Google Scholar
32. Kinniburgh, D. G., van Riemsdijk, W. H., Koopal, L. K., Borkovec, M., Benedetti, M. F. and Avena, M. J., Colloid Surf. A-Physicochem. Eng. Asp. 151, 147 (1999).Google Scholar