Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-20T17:22:17.907Z Has data issue: false hasContentIssue false

The Influence of Implantation-Induced Non-Stoichionetry on the Epitaxial Recrystallization of CoSi2

Published online by Cambridge University Press:  03 September 2012

M.C. Ridgway
Affiliation:
Department of Electronic Materials Engineering, Australian National University, Canberra, Australia
A. Vantomme
Affiliation:
Instituut voor Kern-en Stralingsfysika, Katholieke Universiteit Leuven, Leuven, Belqium
A.-M. Van Bavel
Affiliation:
Instituut voor Kern-en Stralingsfysika, Katholieke Universiteit Leuven, Leuven, Belqium
G. Langouche
Affiliation:
Instituut voor Kern-en Stralingsfysika, Katholieke Universiteit Leuven, Leuven, Belqium
Get access

Abstract

Epitaxial CoSi2 layers on Si substrates have been amorphized with Co and/or Si ion implantation. The influence of nonstoichiometry on the rate of solid-phase epitaxial growth (SPEG) of amorphized CoSi2 has been investigated with time-resolved reflectivity, Rutherford backscattering spectrometry and Mossbauer spectrometry, the latter with radioactive 57Co probes. A decrease in SPEG rate was apparent with an increase in nonstoichiometry. For a given ion dose, the decrease was greater following Co implantation. The means by which non-stoichiometry is accommodated in a crystalline CoSi2 lattice - either through phase separation or defect formation - has been considered. SPEG rate retardation was also evident in samples implanted with both Si and Co ions with a Si:Co dose ratio of 2:1. Additional mechanisms may thus also contribute to the observed SPEG rate reduction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hewett, C.A., Lau, S.S., Suni, I. and Hung, L.S., J.Appl.Phys. 57 (1985) 1089.Google Scholar
[2] Ridgway, M.C., Elliman, R.G., Thornton, R.P. and Williams, J.S., Appl.Phys.Lett. 56 (1990) 1992.Google Scholar
[3] Maex, K., White, A.E., Short, K.T., Hsieh, Y.-F., Hull, R., Osenbach, J.W. and Praefcke, H.C., J.Appl.Phys. 68 (1990) 5641.Google Scholar
[4] Ridgway, M.C., Elliman, R.G., Petravic, M., Thornton, R.P. and Williams, J.S., J.Mat. Res. 6 (1991) 1035.Google Scholar
[5] Ridgway, M.C., Elliman, R.G. and Williams, J.S., Appl.Surf.Sci. 53 (1991) 260.Google Scholar
[6] Biersack, J.P. and Haggmark, L.G., Nucl.lnstrum.Meth. 174 (1980) 257.Google Scholar
[7] Armini, A.J. and Bunker, S.N., Mat.Sci.Eng. A114 (1989) 67.Google Scholar
[8] Olsen, G.L., Kokorowski, S.A., MacFarlane, R.A. and Hess, L.D., Appl.Phys.Lett. 37 (1980) 1019.Google Scholar
[9] Vantomme, A., Dezsi, I. and Langouche, G., Nucl.Instrum.Meth 839 (1989) 284.Google Scholar
[10] Hansen, M., in Constitution of Binary Alloys (McGraw-Hill, New York, 1958).Google Scholar
[11] Lidiard, A.B., in Crystals with the Fluorite Structure, edited by Hayes, W. (Clarendon Press, Oxford, 1974) p. 101.Google Scholar
[12] White, A.E., Short, K.T., Dynes, R.C., Garno, J.P. and Gibson, J.M., Appl.Phys.Lett. 50 (1987) 481.Google Scholar
[13] Veirman, A. De, Landuyt, J. Van, Reeson, K.J., Gwilliam, R., Jeynes, C. and Sealy, B.J., J.Appl.Phys. 68 (1990) 3792.CrossRefGoogle Scholar
[14] Vantomme, A. and Langouche, G., Hyp.Int. 70 (1992) 913.Google Scholar
[15] Tan, Z.-Q., Budnick, J.I., Sanchez, F.H., Tourillon, T., Namavar, F. and Hayden, H.C., Phys.Rev. B40 (1989) 6368.Google Scholar
[16] Mantl, R., Jebasinski, R. and Hartmann, D., Nucl.Instrum.Meth. B59/60 (1991) 666.Google Scholar
[17] Briggs, A., Thomas, O., Madar, R. and Senateur, J.P., Appl.Surf.Sci. 38 (1989) 88.Google Scholar
[18] Barge, T., Poize, S., Bernardini, J. and Gas, P., Appl.Surf.Sci. 53 (1991) 180.Google Scholar
[19] Balogh, A.G., Bottyan, L., Brauer, G., Dezsi, I. and Molnar, B., J.Phys. F16 (1986) 1725.Google Scholar
[20] Williams, J.S., in surface Modification and Alloying, eds. Poate, J.M., Foti, G. and Jacobson, D.C. (Plenum, New York, 1983) p. 133 and references therein.Google Scholar
[21] Smith, D.A. and Allen, C.W., Ultramicroscopy 37 (1991) 279.Google Scholar
[22] Hong, Q.Z., Zhu, J.G., Mayer, J.W., Xia, W. and Lau, S.S., J.Appl.Phys. 71 (1992) 1768.Google Scholar
[23] Clevenger, L.A., Hong, Q.Z., Mann, R., Harper, J.M.E., Barmak, K., Cabral, C. Jr., Nobili, C. and Ottaviani, G., in Phase Transformations in Thin Films - Thermodynamics and Kinetics, eds. Atzmon, M., Greer, A.L., Harper, J.M.E. and Libera, M.R. (Mat.Res.Soc., Pittsburgh, 1993) in press.Google Scholar
[24] Dezsi, I., Engelman, H., Gonser, U. and Langouche, G., Hyp.Int. 33 (1987) 161.CrossRefGoogle Scholar