Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T13:04:57.458Z Has data issue: false hasContentIssue false

The Influence of Implantation Conditions and Target Orientation in High Dose Implantation of Al+ into Si#

Published online by Cambridge University Press:  25 February 2011

F. Nam-Avar
Affiliation:
The University of Connecticut, Storrs, CT 06268;
J. I. Budnick
Affiliation:
The University of Connecticut, Storrs, CT 06268;
A. Fasihuddin
Affiliation:
The University of Connecticut, Storrs, CT 06268;
H. C. Hayden
Affiliation:
The University of Connecticut, Storrs, CT 06268;
D. A. Pease
Affiliation:
The University of Connecticut, Storrs, CT 06268;
F. A. Otter
Affiliation:
United Technologies Research Center, East Hartford, CT 06108
V. Patarini
Affiliation:
United Technologies Research Center, East Hartford, CT 06108
Get access

Abstract

We report the preliminary results of a study to determine the dependence of the near surface composition and structure on total dose, dose rate, vacuum condition and substrate orientation for Al implantation into Si (111) and Si (100) with doses up to 2 × 10l8 ions/cm2. Our studies include the results of Rutherford Back Scattering (RBS), Auger Electron Spectroscopy (AES) and x-ray diffraction measurements on samples implanted with a 100 keV energy in a diffusion pumped vacuum (DPV) system (10−6 Torr) with and without a LN2 trap and in an ultra high vacuum (UHV) system (2–4) x 10−8 Torr.

Results of high dose rate (50 μA/cm2 ) implantation into Si (111) in an untrapped DPV system indicate that Al segregates with a preferred (111) orientation. For a dose of 1 × 1018 ions/cm2 the surface is Al-rich to a depth of 2500Å while for lower doses the surface is silicon-rich. A carbon build-yp occurred for samples prepared by low dose rate (5 μA/cm2 ) implantation. However, no Al segregation could be observed for doses of less than 1018 ions/cm2 . A similar behavior has been observed for Si (100) except that Al segregation occurs with a polycrystalline structure. Moreover, the segregated Al is present at depths greater than the projected range.

When implantation was carried out in a DPV system with a LN2 trap, no carbon peaks could be observed by RBS regardless of the dose rate. For these conditions, as well as for the implantation of Al in an UHV system, we find Al segregation with a polycrystalline structure independent of the dose rates and target orientations we used. Al is observed at a depth greater by a factor of two than the expected value from the Rpcalculations. The Al depth penetration increases with the dose of implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

#

Supported by the Office of Naval Research.

References

REFERENCES

1. Namavar, F., Budnick, J.I. and Otter, F.A., Thin Solid Films 104 (1983) p. 31.Google Scholar
2. Namavar, F., Budnick, J.I. and Otter, F.A., unpublished data, 1983.Google Scholar
3. Lau, S.S., Tsaur, B.Y., von Allmen, M., Mayer, J.W., Stritzker, B., White, C.W. and Appleton, B., Nuclear Instruments and Methods 182/183 (1981) pp. 97105.Google Scholar
4. Rusbridge, K.L., Nuclear Instruments and Methods 182/183 (1981) p. 521.Google Scholar
5. Bertram, K.L., Minter, F.J., Hudson, J.A. and Russell, K.C., Journal of Nuclear Materials 75 (1978) p. 42.Google Scholar
6. Mruzik, M.R. and Russell, K.C., Journal of Nuclear Materials 78 (1978) p. 343.Google Scholar
7. Jones, H. and Suryanarayana, C., Journal of Materials Science 8 (1973) p. 705.Google Scholar
8. Kaufmann, E.N. and Buene, L., Nuclear Instruments and Methods 182/183 (1981) p. 327.Google Scholar
9. Tsaur, B.Y., Lau, S.S., Hung, L.S. and Mayer, J.W., Nuclear Instruments and Methods 182/183 (1981) p. 67.Google Scholar
10. Marwick, A.D. in Surface Modification and Alloying, edited by Poate, J.M., Foti, G. and Jacobson, D.C. (Plenum Press, New York and London, 1983), p. 211.Google Scholar